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Abstract

Convex ideals in a partially ordered ring give a naturally induced partial order in their residue class rings ([1]). The similar
holds for convex subgroups in a partially ordered group. The partial orders in rings or groups are respectively determined by semi-
cones ([3, 4]) or positive subsets ([7]). In this paper, we give a characterization for convexity of subgroups in the direct product
groups with some canonical positive subsets. Also, we give a method of the construction of the product extension rings which

have semi-cones with a similar type of those positive sets, and we consider convexity of ideals there.
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1. Introduction

The symbol G means a non-zero additive group (abbreviated group). The symbol R means a non-zero commutative ring with
the identity 1.

The symbol Z is the ring of integers, and Z* (resp. N) is the set of non-negative (resp. positive) integers.

As is well-known, G (resp. R) is a partially ordered group (resp. partially ordered ring) if it has a partial order < satisfying (i)
(resp. (i) and (ii)) below.
(1) a < b implies a +x < b + x for all x.

(if) a < b and 0 < x imply ax < bx.

Let us recall that a partial order in G satisfying (i) is determined by a positive subset P of G ([7]); that is, P + P C P and
PN—P=0,here P+P={x+y|x,y e P},-P={-x € G|x e P}. Namely, for a positive subset P of G, define x < p y by
y—x € P, then < p is a partial order satisfying (i) in G. Conversely, for a partial order < satisfying (i) in G, P= {x € G |x >0}
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is a positive subset of G with <= < p. For a positive subset P in G, — P is also a positive subset. A subset S of R is a non-
negative semi-cone ([3]) (abbreviated semi-cone ([4])), if S is a positive subset satisfying SS C S, here SS= {xy |x,y € S}. A
semi-cone S is a non-negative cone ([2]) (abbreviated cone ([6])), if R=S U — S. A partial order (resp. order) in R satisfying (i)
and (ii) is determined by a semi-cone (resp. cone), and then a ring with a semi-cone (resp. cone) is precisely a partial ordered

ring (resp. ordered ring). (The concepts of semi-cones, cones, etc. are classical or well-known).

Let H be a subgroup of G. For a positive subset P of G (i.e., G has a partial order < =< p ), H is convex for P (or P-convex)
if whenever z<x<yandz y € H, thenx € H, here we can assume z=0<x<y € H N P. The similar is true of a subgroup of
the direct product group G x G with a positive subset. For positive subsets P and 7 of G with P C T, if H is T-convex, H is

P-convex.

For a (proper) subgroup H and a positive subset P of G, H is convex for P iff the residue class group G/H has a positive
subset ¢(P) by the natural map ¢. For a (proper) ideal / and a semi-cone S of R, the similar holds for the residue class ring R//

(see [1]). We consider the ordered ring (resp. partially ordered ring) R/I in terms of a cone (resp. semi-cone) S of R in [2, 3], etc.

Fora, b € R, let (R X R; a, b) be aring (R x R, +, *) defined by the addition + and multiplication * below, and we call
(R % R; a, b) the product extension ring of R ([5]): For (x1, y1), (x2,2) € R X R, let

(x1, y1) + (x2, ¥2) = (01 + X2, y1 +12),
(x1, y1) * (x2, y2) = (X102 + ay1y2, X1y2 + yixa + byiya).

The ring (R x R; a, b) is a commutative R-algebra which contains a subring isomorphic to R, and it gives useful ring-theoretic
constructions or examples. The direct product ring R x R is not an integral domain. On the other hand, the ring (R x R; a, b) is
possibly an integral domain or a field (if so is R), specially, for the real number field R, (R x R ; —1, 0) is a field isomorphic to

the complex number field (for these, see [5]).

Throughout this paper, the symbol P means a positive subset of G with P # 0, and let Py = {x € P | x # 0}. The symbol S
means a semi-cone of R with S # 0, and let Sy = {x € S| x # 0}.

The symbol (G, P) means that G is a partially ordered group with the partial order < = < p , and the similar is true of the
symbol (G', P"), etc.

For P of G, let us recall the following canonical positive subsets of G x G which are induced by P ([7]).

Dy={(x,y) e PxP|x=ye P}.
Dy={(x,y) e PxP|x—yeP}.
Dy={(x,y) e PxP|y—x € P}.
Lo=P x P.

L=1LyU (Py*G). (Lexicographic set)

Throughout this paper, let us use the symbol D; instead of Lo (i.e., D3 = Lg). We use the symbol D; instead of “Di (i =0, 1, 2, 3)”.
Clearly, Dy = Dy N\ Dy, DyU D, C D3 C L. For D; and L induced by a semi-cone S of R (instead of P of G), Di are semi-
cones in the direct product ring R x R, but L is never a semi-cone there. On the other hand, these D: or L need not be semi-

cones in the product extension ring (R x R; a, b) (see [6]).

In [6], for L we give a characterization for ideals in the product extension rings to be convex, assuming L is a semi-cone.
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Analogously, we give a characterization for subgroups in the (direct) product groups to be convex for (the positive subset) L
A7D.

In this paper, we give a characterization for convexity of subgroups in G x G with the positive subsets D: induced by P under
(G, P) being Archimedean. We apply it to ideals in R X R with the semi-cones Di induced by S, and ideals in (R x R; a, b) with
assuming D; are semi-cones. To avoid this assumption, for (R x R; a, b) and the positive subsets D, we systematically construct
a product extension ring (R' x R'; a’, b') satisfying the following: (i) it contains (R x R; a, b) as a group R x R with D;, (ii) it has
semi-cones D; of a similar type of D: with D/ * D/ = 0, and (iii) for an ideal / of (R x R; a, b), there exists an ideal /' of

(R'x R'"; @', b") such that / is convex for D; as the group R x R iff so is /' for D;.

2. Group monomorphisms and convexity

The following is a basic proposition on preservation of convexity.

Proposition 2.1. Let h : G — G' be a group monomorphism. Let T be a positive subset of G, and let T' = h(T). Then the
following hold.

(1) T'is a positive subset of G".

(2) For a subgroup H (resp. H') of G (resp. G"), suppose (T) h(H N T) = H' N T" holds. Then H is convex for T iff H' is

convex for T'.

Proof. (1) is obvious. For (2), the if part is routinely shown by (7'), noting 0 <x <y, <=< pimplies 0 < h(x) < h(y), <=< 1.
To see the only if part, let 0 <x'<y'e H'N T, <=<p. Then y'= h(y) for some y € HN Tby (T), and x' = h(x) for some x € T.
Buty'—x'=h(y—x) e T". Then0<x<ye HNT,<=<r. Thus,x € HN T by convexity of H for 7. Hence x'= h(x) € H'by
(7). O

Remark 2.2. In Proposition 2.1(2), (T) is essential even if /4 is the identity map (putting G = G'=2Z, T=T'=2Z*, and H = 2Z,
H'=4Z and vice versa.

Generally, the following holds for convexity of subgroups of Z (cf. [3]).

(Proposition) For a positive subset T, and a non-zero subgroup H of Z, H is convex for T iff T C H (indeed, the if part is
obvious. For the only if part, we can put H = mZ forsome m € N. Letn € T. Then0<n<mn € H,here<=< 7. Thusn € H

by the convexity of H. Hence T C H).

Let p1, p2 : G x G — G be the projections defined by pi(x, y) = x, pa(x, y) = y.
Let H be a subgroup of G x G, and T be a positive subset of G x G with T C P x P. Related to convexity of H, let us recall
the following conditions (p;) for 7 ([7, 9]).

(p1) 0<x<yepi(HNT)implies (x,0) € H.
(p2) 0<x<yepyHNT)implies (0, x) € H.

For a subgroup H', and a positive subset 7' of G’ x G'with 7" C P’ x P’, similarly define conditions (p’;) for 7" as (p;) by the
projections p’; : G' x G' — G'.

Remark 2.3. Let H be a subgroup of G x G. Then the following hold.
(1) For the positive subsets Di of G x G, if (p1) and (p») hold, then H is convex. For Dj, the converse holds (but for the
other Di, the converse need not hold).

(2) ForDi (i=0, 1, 2), if H is convex, then (p1) < (p») holds.
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Indeed, (1) is shown in [7], but for the parenthetic part, consider a subgroup H = {(x, x) | x € Z} of Z x Z. In (2), for D, to
see (p1) = (p2), let 0 <x <y € po(H N Dy). Take (x’, y) € HN D;. Then0<x<x'e p;(HN D;),and (0,0) < (x, x)<(x,y) €
H N Dy. Thus (x, 0) and (x, x) € H by the assumption, hence (0, x) € H. Thus (p») holds. Similarly, for Dy, (p1) < (p2) holds,
and for Dy, (p2) = (p1) holds. For Dy, to see (p2) = (p1), let 0 <x <y € p1(H N Dy). Take (y, ') e HN D;. Since 0<y'<y’' e
p2(HN Dy), (0,y") € Hby (p2). Hence (v, 0)=(y, y") —(0,»") € H. Thus (0, 0) < (x, 0) <(y, 0) € H. Then (x, 0) € H. Hence
(p1) holds. Similarly, for D», (p1) = (p2) holds.

By a group monomorphism f: (G, P) — (G', P'), we shall mean a group monomorphism f from G to G' which is order-
preserving (that is, f(P) < P').

For a group monomorphism [ : (G, P) — (G', P'"), we shall say that f'is a group embedding (or (G, P) is group embeddable in
(G", P")via f) if 1 is also order-reflecting (that is, f "'(P') < P), equivalently, P = f "'(P").

We note that (Z, Z*) is group embeddable in any (G', P") via f (defined by f(n) = pn for some p € Py).

For a group monomorphism f: (G, P) — (G, P"),let g=f % f: (G x G, P x P) — (G'xG', P'xP") be a group monomorphism
defined by g(x, y) = (f(x), f(»)). (Evidently, g= f x f is a group embedding iff so is f).

Theorem 2.4. For a group monomorphism f : (G, P) — (G', P"),let g=f %X f: (G x G, P x P) > (G' X G, P' x P"). Let T be
a positive subset of G x G with T P x P, and let T' = ¢(T). For a subgroup H (resp. H') of G % G (resp. G' x G'), suppose (P)
g(H N (P x P))=H'N g(P x P) holds. Then the following hold.

(1) His convex for Tiff H' is convex for T".

(2) Foreachi=1,2, Hsatisfies (p;) for T iff H' satisfies (p]) for T', here <= <sp) in (p]).

Proof. Note (T) ¢g(HN T)=H'N T'holds by (P) with T < P x P. Thus (1) holds by Proposition 2.1, putting # = g. For (2),
let i = 1. For the if part, to see (p1), let 0 <x <y e pi1(HN T). Then 0 < f(x) < f(y) € p1(H' N T") by (T') with f(P) < P, here
<=<y(pr). Since H'satisfies (p}), (f(x), 0) € H'N g(P x P). Thus (x, 0) € H by (P). For the only if part, to see (p}), let 0 <x'<
y'epiH' NT),<=<sp). Sincey' € pi(H' N T"), take y € p1(H N T) N P with f(y) =y"by (T), and x' = f(x) € f(P). But,
y'=x'"=f(y—x) e f(P),then0<x<y e pi(HNT). Thus (x,0) € Hby (p1). Hence, (x’, 0) € H' by (P). Fori=2,(2)is

similarly shown. O

Remark 2.5. In Theorem 2.4, (P) is essential, moreover (P) can not be replaced by (7) g(H N T)=H'N T"in (2) even if g is
the identity map and a group embedding.

Indeed, let [ : (Z, 2Z*) — (Z, 2Z*) be the identity map, and let g = ' x f, and let H; = 2Z x 27, H, =4Z x 4Z. For (1), let T
=27* x 27Z*. Then H| is convex, but H, is not convex for 7. For (2), let 7= 4Z* x 4Z*. Then (T) holds, but (P) doesn’t hold.
Also, H; satisfies (p;), but H, doesn’t satisfy (p;) for 7. Hence, we obtain desired examples, putting H = H;, H' = H, and vice

versa.

3. Convexity of subgroups in the product groups

We give characterizations for subgroups of G X G to be convex for the positive subsets Di of G x G induced by P under

(G, P) being Archimedean (i.e., for each x, y € Py, y < nx for some n € N).

Theorem 3.1. Let (G, P) be Archimedean. For a subgroup H of G x G, and the positive subsets Di of G x G induced by P, the
following hold.

(1) For Dy, H is convex iff Doy < H or Dy N H=0.

(2) For Dy, His convex iff Dyc H DN H=Px0,D, N H=Dy,or Dy N H=0.

(3) For Dy, His convex iff Dy c H D, N H=0x% P, D, N H= Dy, or D, N H=0.

(4) For D3, His convex iff Dsc HLDsNH=P*x0,DsNH=0xP,or Ds N H=0.
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Proof. (1) The if part is obvious. For the only if part, let H be Dg-convex and Dy N H # 0. Take (po, po) € Do N H with
po € Py. Forp € Py, let p <mp, for some m € N. Then (0, 0) < (p, p) <m(po, po) € Do N H. Thus (p, p) € H. Hence Dy < H.

(2) For the if part, let (0, 0) < (x, ) <(x,¥») e DiNH. ForDiNH=P %0, (x,y)=(x,0) € Px0cH, thus (x,y) € H. For
DiNH=Dy,y —y<x'—x,butx'=y’,sox<y. Buty<x. Thenx =y, thus (x, y) € H. Hence H is convex. For the other
cases, obviously H is convex. For the only if part, let us consider the following case: (i) D1 N H= Dy N H, or (ii)) D1 N H #
Do N H, but (ii") p2(D; N H) # 0 or (ii") po(Dy N H) = 0.

For (i), since H is Dj-convex and Dy < D;, H is Dy-convex by (i). Thus, by (1), Do < H or Dy N H = 0, which implies
Dy N H=DgorD; N H=0 by (i).

For (ii), to see P x 0 < H, let p € Py. Take (1, t,) € D1 N H with t; # t,. Let p < n(t; — t;) for some n € N. Then (0, 0) <
», 0)<n(t,, n) € D N H. Since H is Dy-convex, (p, 0) € H. This shows P x 0 < H. Now, for (ii"), to see 0 x P H, let p €
Py. Take (uy, up) € D1 N Hwith uy #0. Let p <iup for some i € N. Then (0, 0) < (p, p) <i(uy, u) € D; N H. Then (p, p) € H.
Thus, (0, p) = (p,p) — (p,0) € Hby P x 0 c H in (ii). This shows 0 x P < H. Thus, D3 = (P x 0) + (0 x P) < H, hence D| c H.
For (ii"), Dy N Hc< P x 0. But, Px 0 < Dy, then P x 0 < D; N Hby (ii). Thus Dy N H=P x 0.

(3) This is similarly shown as in (2), so we shall omit the proof.

(4) The if part is routinely shown. For the only if part, let us consider the following cases: (i) p1(D3 N H) # 0, p2(D3s N H) #0
(i) p1(D3 N H) # 0, p2(D3 N H) = 0 (iii) pi(D3 N H) =0, po(D3 N H) # 0 (iv) pi(D3 N H) =0, px(D3 N H) =0.

For (i), to see P x 0 c H, let p € Py. Take (vi, v2) € D3 N H with v; # 0, and let p < kv; for some k£ € N. Then (0, 0) < (p, 0)
< k(vi, v2) € D3 N H. Since H is Ds-convex, (p, 0) € H. Hence P x 0 — H. Similarly, 0 x P < H. Thus D3 < H. For (ii),
Px0c H,and D; N Hc P x0. Thus D3 N H= P x0. For (iii), similarly Ds N H =0 x P. For (iv), obviously Ds N H=0. O

Corollary 3.2. Let (R, S) be Archimedean, in particular R =Z. For an ideal I of the (direct) product ring R X R, and the semi-

cones Di induced by S, the results in Theorem 3.1 remain true.

Corollary 3.3 below is shown by (the the proof of) Theorem 3.1(2),(3) with Remark 2.3(1), here (ii) is essential in view of
Remark 2.3(1). The corollary is an improvement of [9, Proposition 3.23(2)].

Corollary 3.3. Let (G, P) be Archimedean. Then a subgroup of H of G % G is convex for D (vesp. D») iff (i) H satisfies (p1)
and (p2), or (ii) D1 N H = Dy (resp. D» N H = Dy).

Remark 3.4. Let (R, <) be a partially ordered integral domain such that () for each non-zero element a € R, 0 < a? (or 0 < aa’
for some a' € R). In [3], we consider convexity of ideals of the polynomial ring R[x] with the ordinary order <; or <,. Note
(R[x], <1) is non-Archimedean, here for f(x) € R[x], 0 < f(x) if the leading coefficient of f(x) is positive in R. Let (R[x], S) =
(R[x], <1). Let I be an ideal of the direct product ring R[x] x R[x]. Thus I = pi(I) x po(I) with pi(/) ideals. For a non-zero,
proper ideal 7, the following hold.

(1) For Dy, Iis convex iff pi(1) N po(I) N S=0 (< p1({) =0 or pr(1) = 0).

(2) For Dy, Iis convex iff 7= R[x] x 0 or I=0 x py(I).

(3) For Dy, I'is convex iff /=0 x R[x] or /=p;(I) x 0.

(4) For D3, I'is convex iff /=R[x] x 0 or /=0 x R[x].

Indeed, the if part is obvious. To see the only if part, let / be Di-convex. Suppose there exists f(x) € pi(Z) N po(I) N Sp.
Then (0, 0) < (1, 1) < (xf(x), xf(x)) € I N Di. Thus (1, 1) € I, so I = R[x] x R[x], a contradiction. Hence, pi(/) N p2(I) N Sp=
@. Next, suppose pi(I/) # 0 and po(I) # 0. Take (f(x), g(x)) € I N (So x So) by (*) and I = pi(I) * p2(I). Then f(x)g(x) €
pil) N pa(I) N Sy, a contradiction. Thus (pi(1) # 0, po(I) = 0), or (p1(/) = 0, po(I) # 0). But, for an ideal pi(/) # 0, pi({) is
S-convex iff pi(I) = R[x] (actually, assume pi(/) is S-convex. Take f(x) € pi({) N Sy by (), then 0 <; 1 <y xf(x) € pi(/) N S,
thus 1 € pi(Z) which yields pi(/) = R[x]). Hence, (1)~(4) hold in view of the above.
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4. Convexity of ideals in the product extension rings

In this section, the the symbol R ® R means the direct product ring of R (as in [5, 8]), but the symbol R x R denotes the
(additive) group of the ring R ® R.

The product extension ring (R X R; a, b) is a ring which is R X R as an additive group, and the following multiplication is
given (in Section 1).

(e, y1) * (x2, ¥2) = (x1x2 + ayiya, x1y2 + y1x2 + byiya).

Note that (R x R; a, b) has the identity (1, 0), and (0, 1) * (0, 1) = (a, b).

The product extension ring (R x R; 0, 0) is denoted by R x R (as in [5]).

The positive subsets Di (except L) induced by S are semi-cones in R ® R. However, each Di or L need not be a semi-cone in

(R X R; a, b) by the following Proposition 4.1 due to [6]. (For characterizations of semi-cones in Z (resp. Z ® Z, Z x Z), see [3]
(resp. [8]))-

Proposition 4.1. For D; induced by S of R, the following hold in (R x R; a, b). Obviously, for SS = 0, every Di except L is a
semi-cone.

(1) Dy is a semi-cone iff (a + 1)SS < S and (a —b—1)SS=0.

(2) Dy is a semi-cone iff (b +2)SSc Sand (a—b—1)SSc S.

(3) Dsis a semi-cone iff aSS < S and (b — a)SS c S.

(4) Dsis a semi-cone iff aSS < S and bSS < S.

(5) L is a semi-cone iff aS = bSS =0, SoSo + aR < Sy, and (Sp + bR)S  S.

Remark 4.2. (1) If L is a semi-cone in (R x R; a, b), then SoSo < Sy (thus SS # 0), and the converse holds if « = b = 0. For
S = 1 (resp. R being an integral domain), L is a semi-cone iff @ = b = 0 and SpSo < Sp (resp. a = b =0). For § > 1, we can not
omit “SpSp = Sp” (by putting S =Z* ® Z* in R =Z ® Z). This suggests that we should delete “S > 1” in [6, Corollary 2.7(3)(b)].

(2)Lisaconein (RxR; a, b)iffa=b=0, Sis a cone in R, and SySy = Sp (equivalently, R is an integral domain) by (1), but L
is not even a semi-cone in R ® R. Any D; is not a cone in (R X R; a, b) or R ® R. We note that there exist no cones in R ® R,
namely, R ® R can not be an ordered ring ([4]). A characterization for cones of K x K with K a field is given in [4]. We can

replace “field” by “integral domain”.

In what follows, the symbol R' means R x R, and the symbol P' means 0XP in R', here P is a positive subset of R.
Let f': R — R' be a group monomorphism defined by f'(x) = (0, x). Then f'(P) = P'. The symbol g' means the following
group monomorphism

g'=J"*[":RxR— R"*R'defined by g'(x, y) = ((0, x), (0, y))-

Remark 4.3. (1) The group monomorphism g’ : (R x R; a, b)) — (R'x R'; a’, b") is never a ring homomorphism (by
g'((1,0) * (1, 0)) # g'(1, 0) * g'(1, 0) = 0).

(2) Let us define g* : (Rx R; a, b) = (R'x R"; a', b") by g*(x, y) = ((x, 0), (¥, 0)). Then g* is a ring monomorphism. But, for
a non-zero ideal / of (R x R; a, b), g*(I) is never an ideal of (R' x R"; a’, b") (actually, for a non-zero element (x, y) € I,

g*(x, ) * ((0, 1), (0, 0)) = ((0, x), (0, ) & g*(I)). For g'(/) being an ideal, see Lemma 4.10 later.

We note that the additive group of the ring R ® R or (R x R; a, b) is the group R X R, and so is R' x R’ for R' ® R’ or
(R'xR";a',b").
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Proposition 4.4. For the group monomorphism g': R x R — R'x R', let T be a positive subset of R * R (such as T = Di induced
by P), and let T'= g'(T'). Then the following hold.

(1) T'is a positive subset of R' x R'. Further, T' is a semi-cone of R' ® R' as well as (any) (R'x R"; a', b") with T'T' = 0.

(2) (R xR, T)is group embeddable in (R' x R', T") (in particular, let T=P X P and T'=P'x P")via g': (R X R, T) —
(R'%R', T").

Proof. For (1), T" is a positive subset of R’ x R’ by Proposition 2.1(1), putting 2 = g, and 7'T'=0in R'® R'or (R'x R"; a’, b"),
noting (0 x R) * (0 x R)=01in R". (2) is obvious by 7T"= g'(T') with (1). d

Remark 4.5. (1) For the positive subsets Di of R x R induced by P, let D} = g'(D:), and D* be the positive subsets of R’ x R’
induced by P". Then D} = D¥*. Also, D} are semi-cones in (any) (R'x R'"; a’, b") by Proposition 4. 4(1).

(2) For the positive subset L of R X R induced by P, let L' = g'(L), and L* be the positive subset of R’ x R’ induced by P".
Then L'= L*Ng'(R x R). Besides, L'is a semi-cone by Proposition 4.4(1), but L* is not a semi-cone in (any) (R'x R'; a’, b") by
Remark 4.2(1), noting P' P'= 0.

We recall that @ € R (resp. a — b — 1 € R) is a unit in R iff (0, 1) (resp. (1, 1)) is a unit in (R x R; a, b).

Lemma 4.6. Let I be an ideal of (R x R; a, b). Then the following hold as the sets Di induced by P.
(1) PxO0cleDicle Dyl
(2) faceRisaunit, 0OxPcls Dycle Dyl
(3) Ifa—b—1€Risaunit, Dycl<DicleD,cles Dyl

Proof. For (1), assume P x 0 = I. To see D3 < [, let (s, £) € D3. Then (s, 0), (¢, 0) € I (by P x 0 = I). But, (0, ¢) € I, noting
(x, 0) * (0, 1) = (0, x). Hence (s, 1) = (s, 0) + (0, ¥) € I. Similarly, (2) holds, noting (x, 0) = (0, x) = (0, 1), and (3) holds, noting
(6, 0) = (x,0) * (1, )", U

In Theorem 4.7 below, (1) holds by Theorem 3.1 with Lemma 4.6. (2) holds by Proposition 4.4(1) with (1), noting (R’, P') is

Archimedean. (1) is a generalization of [9, Theorem 4.5], where / is generated by a single element in (Z x Z; a, b).

Theorem 4.7. The following hold.

(1) Let (R, S) be Archimedean. For an ideal I of (R X R; a, b), the following hold, but we assume Di are semi-cones induced
by S.
(a) For Dy, 1is convex iff Do = I or Dy NI =0.
(b) For Dy, Iis convex iff Dy < I, Dy N I= Dy, or D; N I=0.
(¢) For Dy, Lis convex iff Dyc I, D, N I[=0xS, D, N 1= Dy, or D NI=0.
(d) For Ds, Iis convex iff DscI,DsNI1=0xS,0or Ds N I1=0.
(For a € R being a unit, we can delete D, N I =0xS in (¢), and D3 N [ = 0xS in (d). For a—b—1 € R being a unit, we can
delete D\ N I=Dyin (b), and D, N =Dy in (c)).

(2) Let (R, P) be Archimedean. Let Di be the positive subsets of R x R induced by P. Then, for an ideal I' and semi-cones D
= g'(Di) induced by P'"in (R'x R'; a', b"), the results in (1) remain true, replacing “S” by “P”, and adding the prime “ '~

on the symbols (such as a’ € R").

Remark 4.8. In Theorem 4.7, let ; =1 N (S % 0), [, =1N (0 x S). Then we have the following in (R x R; a, b) and its (systematic)
analogue in (R'x R'; a’, b") (under the same assumptions there).

(1) For Dy, Iis convex with I; #0 iff D; < L.
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(2) For Dy, Iis convex with b #0iff DyclorD, N I=0x S. (Fora € R being a unit, D, N /=0 x S is deleted).

(3) For Ds, Iis convex with [} #0 iff D3 < [.

(ForR=7Z,1; #0 (resp. I, # 0) iff [{ =1 N (Z % 0) # 0 (resp. I, =1 N (0xZ) # 0) (indeed, for /] # 0, take m, n € N with (m, 0)
€ [and n € So, then (mn, 0) € I}, thus I} # 0)).

Remark 4.9. The following in [9, Proposition 3.11] is also shown by Remark 4.8(2), and its (systematic) analogue in
(R'x R a',b") holds undera'=1".

(Proposition) For an ideal I of (Z x Z; a, b) with a =1 < b (hence D, is a semi-cone by Proposition 4.1), I is Dy-convex with
L=INO0x2Z)#0iff Dy L

a =1 is essential for the only if part (by an ideal /=0 x Z of (Z x Z; a, b) with a = 0 < b), and I # 0 is also essential by /=0
(cf. [9, Remark 3.12(1)]). We note that there exist no examples of / # 0 under (%) a = 1, b # 0 by the following fact.

(Fact) For an ideal I of (Z x Z; a, b) with (), I5 =0 iff I = 0 (< pa(15) = 0).

(Indeed, the if part is clear, so assume /5 = 0. Since Z is a principal ideal domain, / = (m, k) * (Z x 0) + (0, n) = (Z x 0) for
some m, n, k € Z by [5, Proposition 3.8]. Then n =0 by /5 = 0. Since (m, k) * (0, 1) € [ and a = 1, we have k = mx, m + bk = kx
for some x € Z. Then m(x*> — bx — 1)=0. Butd=x>—bx—1#0by b #0, noting ford=0,2x=(b+Vp2 + 4 ) ¢ Z. Thus m =
0, and £ = 0. Hence /= 0).

Lemma 4.10. Let g': (Rx R; a, b) — (R'x R"; a', b") be the group monomorphism with a' = (c, d), b'= (e, f) € R'. Let I be an
ideal of (R x R; a, b), and I* = g'(I) (thus I* * I* = 0). Then I* is a (proper) ideal of (R'x R"; a', b") iff (C) ((a—c)y, (b—e)y) el
for any y € po(I) (& (cy, x + ey) € I for any (x, y) € I) holds. Thus, I* is an ideal for (a — ¢, b — e) € I (specially, c = a and
e=>b).

Proof. Obviously, I* = I* =0. Forx, y, xi, yi € R,
g,(xs y) * ((X], xz)s (yl7 y2)) = ((Oa X), (05 y)) * ((xl, x2)a (yl,yZ))
= ((0,21),(0,22)) = g'(z1, 22)

in (R'x R’ a', b'), here zy = xx) +eyy, z2 = yx) +xy; +eyyi. Also, for (x, y) € L, (x, y) * (x1, y1) = (21, 22) + ((a = c)yyr, (b — e)yy1)
€ [. Since [ is an ideal, ¢g'(1) is an ideal < g'(z1, z2) € g'(I) (i.e., (z1, z2) € I) for any (x, y) € I, x1, y1 € R &
((@a = cyy1, (b —e)yy1) € I for any y1 € R, y € pa(I) < (C). For the parenthetic part, note (cy, x + ey) = (x, y) * (0, 1) —
((@a—c)y, (b—e)y)in(RxR; a, b). O

For a finitely generated ideal o = Y-, (ui, vi)*(R x R; a, b) of (R x R; a, b) with ui, vi € R, let us define the following
finitely generated ideals of (R'x R’ a’, b'):

I§= 2 (), vl) = (R'x R a', b'"), where u} = (0, u:), vi = (0, vi), a'= (a, ¢), b'= (b, d) € R' (¢, d € R).
I)= 2L, (ul,v) = (R'x R a', b"), where u} = (ui, 0), v} = (vi, 0), a’ = (a, 0), b'= (b, 0) € R".

Hereafter, the symbols Iy, I§ , and 1 mean these finitely generated ideals.

Lemma 4.11. Let g': (RXx R; a, b) > (R'"x R'; a', b") be the group monomorphism. Then the following hold for Iy in
(RxR;a,b),and I}, Ilin (R"x R"; a', b").

() I§ = g'(lo) under a'= (a, c), b'= (b,d) € R'(c,d € R).

(2) I N (Ro XRo) = g'(ly) under a' = (a, 0), b'= (b, 0) € R’, here Ry = OxR.
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Proof- (1) holds, noting the following holds in (R'x R"; a’, b").

((0, ), (0, v)) * ((x1, x2), (1, ¥2)) = ((0, 21), (0, 22)) = g'((w, V) * (x1, ¥1)),

here z; = ux; + avyy, zo = vx; + (u + bv)y; as in the proof of Lemma 4.10.

For (2), the following (*) and (*#) hold in (R'x R"; a', b").

(*) ((uv O)a (V, 0)) * ((xls x2)7 (yls J/2)) = ((le 22)7 (le Wz))a

(%) ((«, 0), (v,0)) * ((0, x2), (0, 32)) = ((0, 22), (0, w2)) = g'((u, V) * (x2, y2)),

here z; = ux; + avyy, zo = uxy + avyy, wi = vxy + (u + bv)y, wa = vxp + (u + bv)y,.

Then (2) holds (indeed, g'(Io) = 1§ N (Ro % Ro) by (*x). For I N (Ro % Ro) < g'(lo), let ((0, x), (0, ¥)) = 2= ((u;, 0), (vi, 0)) *
((xi1, x2), (i1, yi2)) € 1. Then x = 2, zp, y = Xiey wi by (%), here zip = uxp + av;yi, wip = vixp + (u; + bv;)yn. Thus
((0,x), (0,y) = Ziei 9'((us, vi) * (i, yi2)) € g'Lo) by (). g

For convexity of an ideal / of (R x R; a, b) for Di induced by S, we assume D; are semi-cones in [7, 9] (in view of Proposition

4.1), but we assume the following.

We consider an ideal / (resp. subsets D induced by S) in (R x R; a, b) as a subgroup (resp. the positive subsets induced by P)
in the (additive) group R x R of (R x R; a, b), unless otherwise stated.

Theorem 4.12. For the group embedding g': (R x R; a, b), P X P) — (R'x R"; a', b"), P' x P"), let D] = ¢g'(Di). Then the
following hold.
(1) D/ are semi-cones in (R'x R'"; a', b") induced by P' with D} * D; = 0. Moreover, (R x R; a, b),Di) are group embeddable
in(R'x R a',b"),D})via g': (RxR; a, b),Di) > ((R'xR";a', b"), D)).
(2) Foranideal I of (R x R; a, b), suppose I* = g'(I) is an ideal of (R'x R"; a’, b") with a' = (c, d), b'= (e, f) € R' (equivalently,
((a—=c)y, (b—e)y) € Iforanyy € px(l)). Then the following (a) and (b) hold.
(a) Iis convex for Di iff I* is convex for D|.
(b) Isatisfies (p1) (resp. (p2)) for Di iff I* satisfies (p1) (resp. (p3)) for D}, here <= <p'in (p;).
(3) Let Iy in (R x R; a, b). For I (resp. 1§) in (R'x R’ a', b"), let a' = (a, ¢), b’ = (b, d) € R' (¢, d € R) (resp. a’ = (a, 0),
b'= (b, 0) € R"). Then for Iy, and I} (resp. 1}), (a) and (b) in (2) also hold.

Proof. (1) holds by Proposition 4.4. (2) holds by Theorem 2.4 with Lemma 4.10, noting (*) g'(/ N (P x P)) =I1* N g'(P x P), and
f'(P)=P'in (b). For (3), in (*) we can put / = I, and I* = [§ or [ by Lemma 4.11. O

Related to Theorem 4.12(2),(3), let us give the following example.

Example 4.13. (1) For [ in (Z x Z; a, b), g'(Ip) need not be an ideal of (Z'x Z"; a’, b") (indeed, let o = (2, 1) * (Zx Z) =
{@x,x+2y)|x,y € Z},and a’'=b"=1"=(1, 0) € R". Then ((0, 2), (0, 1)) € g'(y), but ((0, 2), (0, 1)) * (0, 1) =((0, 1), (0, 3)) &
g'Io)).

(2) Let us give examples to (i) ~ (iv) for Iy, and the positive subsets D in the group Z x Z of (Z x Z; a, b) below. Then, by
Theorem 4.12(3), we have the similar examples to (i) ~ (iv) for I§ (resp. /y) and semi-cones D} = g'(Di) in (Z'x Z'; a', b'), here
a'=(a,c),b'=(b,d) € Z'(c,d € Z) (resp. a'= (a, 0), b'= (b, 0) € Z)

(1) Ip is Dg-convex, but /j is neither Di-convex nor D,-convex. (ii) /o is Di-convex, but /j is not D,-convex. (iii) /o is

Ds-convex, but /j is not Di-convex. (iv) Iy is D3-convex, thus Di-convex. (Obviously, / is Do-convex in (ii), (iii), but /p is not

,9,
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Ds-convex in (i), (ii), (iii)).

To see (i) ~ (iv), let Di be the positive subsets induced by P = 2Z*.

For (i), let o= (1, 1) * (Zx Z2;-2,2) = {(x — 2y, x + 3y) | x, y € Z}. Then Iy is Do-convex by Dy  Iy. But, Iy is not D;-convex
(by (0,0)<(2,0)<(10,0) € Iy, but (2, 0) & Ip). Similarly, /y is not D>-convex.

For (i), let Ip = (0, 4) * (Zx Z; 0,-3) = {(0, 4x) | x € Z}. Then Iy is D-convex by Iy N Dy = 0, but /j is not D,-convex (by
(0,0)<(0,2)<(0,4) € Iy, but (0, 2) & Ip).

For (iii), let /o = (5, 1) * (Zx Z; 5,—4) = {(5x, x) | x € Z}. Then I, is Dy-convex by I N D, = 0, but y is not Di-convex (by
(0,0)<(2,0)<(10,2) € Iy, but (2, 0) & Ip).

For (iv), let Ip=(1, 1) * (Zx Z; 0, — 3) = {(x, x — 2y) | x, v € Z}. Then [, is D3-convex by [y D Ds.

In the above (i) ~ (iv), any Di induced by S = 2Z* is not a semi-cone in the respective ring (Z x Z; a, b) (actually, for
(2,2) € Di,(2,2) % (2,2) ¢ Di).

Finally, in terms of condition (p;) or (p2), we give the following observation. (1) is shown in [7, 9], but (b)(ii) holds by
Corollary 3.3 with (b)(i). (2), (3) hold by Theorem 4.12.

Observation 4.14. (1) The following hold in (R x R; a, b), but assume that D; are semi-cones induced by S.

(a) Let I be an ideal of (R x R; a, b) with I = pi(I) x p»(I). For Di, I satisfies (p1) and (p») iff / is convex. (We note that for an
ideal /of R ® R, I =pi(I)*p2(I), Di induced by S are semi-cones, and the above result remains true in R ® R).

(b) Let / be an ideal of (R x R; a, b). Then the following hold.

(i) For Dy (resp. Dy; D»), if I satisfies (p1) (resp. (p1); (p1) and (p2)), then 7 is convex. These converses hold ifa —b—1 € R is
a unit, but assume SS = 0 for Dy (for other conditions to the converses for D; or D», see [9, Proposition 3.21]). For Ds, I satisfies
(p1) and (py) iff I is convex. We note (i'), (ii), and (iii") below.

(") For Dy or Dy, (p1) implies (p2). (ii") For D, or D3, (p1) need not imply (p2) or convexity of /. (iii") For each Di, (p») need
not imply (p;) or convexity of /.

(Indeed, for (i), to see (p2), let 0 <x <y € po(I N Di) (i=0, 1). Then 0 <x <x' € p;({ N D) for some (x’, y) € I N Di. Thus
(x, 0) € I by (p1), so (0, x) = (x, 0) * (0, 1) € I. For (ii") (resp. (iii")), consider an ideal / = 0 x 4Z (resp. [ = 4Z % Z) and Di
induced by S=2Z% in (Z x Z; 0, b) (here, Dy, D are semi-cones for b =—1, and so are D,, D3 for b € Z* by Proposition 4.1)).

(ii) Suppose (R, S) is Archimedean. Then, for D; (resp. D»), [ is convex iff [ satisfies (p;) or D; N I = Dy (resp. (p1) and (p2),
or Dy N 1= Dy).

(2) For an ideal /' and semi-cones D = g'(Di) in (R'x R"; a', b"), the results in (1) remain true, replacing “ S by “ P ”, and
adding the prime “ ' on the symbols, here we can delete “SS = 0 for Dy” in (b)(i). (For an ideal /' of R' ® R’, the similar holds
for the parenthetic part in (a) by Proposition 4.4(1)).

(3) Let I be an ideal of (R x R; a, b). For I§ (resp. Ij) in (R'x R’ a’, b"), let a’ = (a, ¢), b’ = (b, d) € R' (¢, d € R) (resp. a' =
(a,0), b'= (b, 0) € R"). Suppose I* = g'(I) is an ideal of (R'x R’ a', b"), in particular I* = I*, = g'(Iy). Then I (resp. Iy) satisfies (p;)
for Di iff I* (resp. 1) satisfies (p/) for D] (= g'(D1)), here j = 1, 2. Also, applying this to (2), we have the following:

For Dy, if I (resp. Ip) satisfies (p1), then 7* (resp. 1)) is convex for Di. The converse holds if a’— b"— 1’ € R is a unit, or
Di N I* # Dy (resp. D N Iy # Dy) with (R, P') Archimedean. For the other Di, some applications to (2) will be similarly

obtained.
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