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Abstract

 Convex ideals in a partially ordered ring give a naturally induced partial order in their residue class rings ([1]).  The similar 

holds for convex subgroups in a partially ordered group.  The partial orders in rings or groups are respectively determined by semi-

cones ([3, 4]) or positive subsets ([7]).  In this paper, we give a characterization for convexity of subgroups in the direct product 

groups with some canonical positive subsets.  Also, we give a method of the construction of the product extension rings which 

have semi-cones with a similar type of those positive sets, and we consider convexity of ideals there. 
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１．Introduction

 The symbol G means a non-zero additive group (abbreviated group).  The symbol R means a non-zero commutative ring with 

the identity 1.

 The symbol Z is the ring of integers, and Z (resp. N) is the set of non-negative (resp. positive) integers.

 As is well-known, G (resp. R) is a partially ordered group (resp. partially ordered ring) if it has a partial order ≤ satisfying (i) 

(resp. (i) and (ii)) below.

 (i) a ≤ b implies a + x ≤ b + x for all x.

 (ii) a ≤ b and 0 ≤ x imply ax ≤ bx.

 Let us recall that a partial order in G satisfying (i) is determined by a positive subset P of G ([7]); that is, P + P ∩  P and 

P ∩ − P = 0, here P + P = {x + y | x, y  P}, ‒P = {‒x  G | x  P}.  Namely, for a positive subset P of G, define x ≤ P  y by 

y − x ∈ P, then ≤ P  is a partial order satisfying (i) in G.  Conversely, for a partial order ≤ satisfying (i) in G, P = {x ∈ G | x ≥ 0} 
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is a positive subset of G with ≤ = ≤ P .  For a positive subset P in G, − P is also a positive subset.  A subset S of R is a non-

negative semi-cone ([3]) (abbreviated semi-cone ([4])), if S is a positive subset satisfying SS ⊂ S, here SS = {xy | x, y ∈ S}.  A 

semi-cone S is a non-negative cone ([2]) (abbreviated cone ([6])), if R = S ∪ − S.  A partial order (resp. order) in R satisfying (i) 

and (ii) is determined by a semi-cone (resp. cone), and then a ring with a semi-cone (resp. cone) is precisely a partial ordered 

ring (resp. ordered ring).  (The concepts of semi-cones, cones, etc.  are classical or well-known).

 Let H be a subgroup of G.  For a positive subset P of G (i.e., G has a partial order ≤ = ≤ P  ), H is convex for P (or P-convex) 

if whenever z ≤ x ≤ y and z, y  H, then x  H, here we can assume z = 0 ≤ x ≤ y  H ∩ P.  The similar is true of a subgroup of 

the direct product group G × G with a positive subset.  For positive subsets P and T of G with P ⊂ T, if H is T-convex, H is 

P-convex. 

 For a (proper) subgroup H and a positive subset P of G, H is convex for P iff the residue class group G/H has a positive 

subset φ(P) by the natural map φ.  For a (proper) ideal I and a semi-cone S of R, the similar holds for the residue class ring R/I 

(see [1]).  We consider the ordered ring (resp. partially ordered ring) R/I in terms of a cone (resp. semi-cone) S of R in [2, 3], etc.

 For a, b  R, let (R  R; a, b) be a ring (R × R, +, ) defined by the addition + and multiplication * below, and we call 

(R  R; a, b) the product extension ring of R ([5]): For (x1, y1), (x2, y2)  R × R, let 

 (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2), 

 (x1, y1) * (x2, y2) = (x1x2 + ay1y2, x1y2 + y1x2 + by1y2). 

 The ring (R  R; a, b) is a commutative R-algebra which contains a subring isomorphic to R, and it gives useful ring-theoretic 

constructions or examples.  The direct product ring R × R is not an integral domain.  On the other hand, the ring (R  R; a, b) is 

possibly an integral domain or a field (if so is R), specially, for the real number field R, (R  R ; −1, 0) is a field isomorphic to 

the complex number field (for these, see [5]).

 Throughout this paper, the symbol P means a positive subset of G with P ≠ 0, and let P0 = {x  P | x ≠ 0}.  The symbol S 

means a semi-cone of R with S ≠ 0, and let S0 = {x  S | x ≠ 0}.

 The symbol (G, P) means that G is a partially ordered group with the partial order ≤ = ≤ P  , and the similar is true of the 

symbol (G′, P′), etc.

 For P of G, let us recall the following canonical positive subsets of G × G which are induced by P ([7]).

 D0 = {(x, y)  P × P | x = y  P}.

 D1 = {(x, y)  P × P | x − y  P}.

 D2 = {(x, y)  P × P | y − x  P}.

 L0 = P × P.

 L = L0 

∩

 (P0 × G).  (Lexicographic set)

 Throughout this paper, let us use the symbol D3 instead of L0 (i.e., D3 = L0).  We use the symbol Di  instead of “Di  (i = 0, 1, 2, 3)”. 

 Clearly, D0 = D1 ∩ D2, D1 

∩ 

D2 ∩  D3 ∩  L.  For Di  and L induced by a semi-cone S of R (instead of P of G), Di  are semi-

cones in the direct product ring R × R, but L is never a semi-cone there.  On the other hand, these Di  or L need not be semi-

cones in the product extension ring (R  R; a, b) (see [6]). 

 In [6], for L we give a characterization for ideals in the product extension rings to be convex, assuming L is a semi-cone.  
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Analogously, we give a characterization for subgroups in the (direct) product groups to be convex for (the positive subset) L 

([7]).

 In this paper, we give a characterization for convexity of subgroups in G × G with the positive subsets Di  induced by P under 

(G, P) being Archimedean.  We apply it to ideals in R × R with the semi-cones Di  induced by S, and ideals in (R  R; a, b) with 

assuming Di  are semi-cones.  To avoid this assumption, for (R  R; a, b) and the positive subsets Di , we systematically construct 

a product extension ring (R′  R′; a′, b′) satisfying the following: (i) it contains (R  R; a, b) as a group R × R with Di , (ii) it has 

semi-cones D′i  of a similar type of Di  with D′i  * D′i  = 0, and (iii) for an ideal I of (R  R; a, b), there exists an ideal I′ of 

(R′  R′; a′, b′) such that I is convex for Di  as the group R × R iff so is I′ for D′i . 

 

２．Group monomorphisms and convexity

 The following is a basic proposition on preservation of convexity. 

Proposition 2.1.  Let h : G → G′ be a group monomorphism.  Let T be a positive subset of G, and let T′ = h(T ).  Then the 

following hold. 

 (1)  T′ is a positive subset of G′. 

 (2)   For a subgroup H (resp. H′ ) of G (resp. G′ ), suppose (T )  h(H ∩ T ) = H′ ∩ T′ holds.  Then H is convex for T iff H′ is 

convex for T′. 

Proof.  (1) is obvious.  For (2), the if part is routinely shown by (T ), noting 0 ≤ x ≤ y, ≤ = ≤ T  implies 0 ≤ h(x) ≤ h(y), ≤ = ≤ T′.  

To see the only if part, let 0 ≤ x′ ≤ y′  H′ ∩ T′, ≤ = ≤T′.  Then y′ = h(y) for some y  H ∩ T by (T ), and x′ = h(x) for some x  T.  

But y′ − x′ = h(y − x)  T′.  Then 0 ≤ x ≤ y  H ∩ T, ≤ = ≤T  .  Thus, x  H ∩ T by convexity of H for T.  Hence x′ = h(x)  H′ by 

(T ). �

Remark 2.2.  In Proposition 2.1(2), (T ) is essential even if h is the identity map (putting G = G′ = Z, T = T′ = 2Z, and H = 2Z, 

H′ = 4Z and vice versa. 

 Generally, the following holds for convexity of subgroups of Z (cf. [3]).

 (Proposition) For a positive subset T, and a non-zero subgroup H of Z, H is convex for T iff T ∩  H (indeed, the if part is 

obvious.  For the only if part, we can put H = mZ for some m  N.  Let n  T.  Then 0 ≤ n ≤ mn  H, here ≤ = ≤ T .  Thus n  H 

by the convexity of H.  Hence T ∩  H ). 

 Let p1, p2 : G × G → G be the projections defined by p1(x, y) = x, p2(x, y) = y. 

 Let H be a subgroup of G × G, and T be a positive subset of G × G with T ∩  P × P.  Related to convexity of H, let us recall 

the following conditions (pi) for T ([7, 9]).

 (p1)  0 ≤ x ≤ y  p1(H ∩ T ) implies (x, 0)  H.

 (p2)  0 ≤ x ≤ y  p2(H ∩ T ) implies (0, x)  H.

 For a subgroup H′, and a positive subset T′ of G′ × G′ with T′ ∩  P′ × P′, similarly define conditions (p′i) for T′ as (pi) by the 

projections p′i  : G′ × G′ → G′.

Remark 2.3.  Let H be a subgroup of G × G.  Then the following hold.

 (1)  For the positive subsets Di  of G × G, if (p1) and (p2) hold, then H is convex.  For D3, the converse holds (but for the 

other Di , the converse need not hold). 

 (2)  For Di  (i = 0, 1, 2), if H is convex, then (p1)  (p2) holds. 
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 Indeed, (1) is shown in [7], but for the parenthetic part, consider a subgroup H = {(x, x) | x  Z} of Z × Z.  In (2), for D1, to 

see (p1)  (p2), let 0 ≤ x ≤ y  p2(H ∩ D1).  Take (x′, y)  H ∩ D1.  Then 0 ≤ x ≤ x′  p1 (H ∩ D1), and (0, 0) ≤ (x, x) ≤ (x′, y)  

H ∩ D1.  Thus (x, 0) and (x, x)  H by the assumption, hence (0, x)  H.  Thus (p2) holds.  Similarly, for D0, (p1)  (p2) holds, 

and for D2, (p2)  (p1) holds.  For D1, to see (p2)  (p1), let 0 ≤ x ≤ y  p1(H ∩ D1).  Take (y, y′ )  H ∩ D1.  Since 0 ≤ y′ ≤ y′  

p2 (H ∩ D1), (0, y ′ )  H by (p2).  Hence (y, 0) = (y, y′ ) − (0, y′ ) H.  Thus (0, 0) ≤ (x, 0) ≤ (y, 0)  H.  Then (x, 0)  H. Hence 

(p1) holds.  Similarly, for D2, (p1)  (p2) holds. 

 By a group monomorphism f : (G, P) → (G′, P′ ), we shall mean a group monomorphism f from G to G′ which is order-

preserving (that is, f (P)  P′ ). 

 For a group monomorphism f  : (G, P) → (G′, P′ ), we shall say that f is a group embedding (or (G, P) is group embeddable in 

(G′, P′ ) via f ) if f  is also order-reflecting (that is, f  −1(P′ )  P), equivalently, P = f  −1(P′ ). 

 We note that (Z, Z) is group embeddable in any (G′, P′ ) via f (defined by f (n) = pn for some p  P′0). 

 For a group monomorphism f : (G, P) → (G′, P′ ), let g = f × f : (G × G, P × P) → (G′×G′, P′×P′ ) be a group monomorphism 

defined by g(x, y) = ( f (x), f (y)).  (Evidently, g = f  × f  is a group embedding iff so is f ). 

Theorem 2.4.  For a group monomorphism f  : (G, P) → (G′, P′ ), let g = f  × f  : (G × G, P × P) → (G′ × G′, P′ × P′ ).  Let T be 

a positive subset of G × G with T  P × P, and let T′ = g(T ).  For a subgroup H (resp. H′ ) of G × G (resp. G′ × G′ ), suppose (P) 

g(H ∩ (P × P)) = H′ ∩ g(P × P) holds.  Then the following hold. 

 (1)  H is convex for T iff H′ is convex for T′. 

 (2)  For each i = 1, 2, H satisfies (pi) for T iff H′ satisfies (p′i ) for T′, here ≤ = ≤ f (P ) in (p′i ). 

Proof.  Note (T )   g(H ∩ T ) = H′ ∩ T′ holds by (P) with T  P × P.  Thus (1) holds by Proposition 2.1, putting h = g.  For (2), 

let i = 1.  For the if part, to see (p1), let 0 ≤ x ≤ y  p1 (H ∩ T ).  Then 0 ≤ f (x) ≤ f (y)  p′1(H′ ∩ T′) by (T ) with f (P)  P′, here 

≤ = ≤ f (P ) .  Since H′ satisfies (p′1), ( f (x), 0)  H′ ∩ g(P × P).  Thus (x, 0)  H by (P).  For the only if part, to see (p′1), let 0 ≤ x′ ≤ 

y′  p′1(H′ ∩ T′), ≤ = ≤ f (P ).  Since y′  p′1(H′ ∩ T′), take y  p1(H ∩ T ) ∩ P with f (y) = y′ by (T ), and x′ = f (x)  f (P).  But, 

y′ − x′ = f (y − x)  f (P), then 0 ≤ x ≤ y  p1(H ∩ T ).  Thus (x, 0)  H by (p1).  Hence, (x′, 0)  H′ by (P).  For i = 2, (2) is 

similarly shown. �

Remark 2.5.  In Theorem 2.4, (P) is essential, moreover (P) can not be replaced by (T )  g(H ∩ T ) = H′ ∩ T′ in (2) even if g is 

the identity map and a group embedding.

 Indeed, let f  : (Z, 2Z) → (Z, 2Z) be the identity map, and let g = f  × f , and let H1 = 2Z × 2Z, H2 = 4Z × 4Z.  For (1), let T 

= 2Z × 2Z.  Then H1 is convex, but H2 is not convex for T.  For (2), let T = 4Z × 4Z.  Then (T ) holds, but (P) doesn’t hold.  

Also, H1 satisfies (pi), but H2 doesn’t satisfy (pi) for T.  Hence, we obtain desired examples, putting H = H1, H′ = H2 and vice 

versa. 

３．Convexity of subgroups in the product groups

 We give characterizations for subgroups of G × G to be convex for the positive subsets Di  of G × G induced by P under 

(G, P) being Archimedean (i.e., for each x, y  P0, y < nx for some n  N). 

Theorem 3.1.  Let (G, P) be Archimedean.  For a subgroup H of G × G, and the positive subsets Di  of G × G induced by P, the 

following hold. 

 (1)  For D0, H is convex iff D0  H or D0 ∩ H = 0. 

 (2)  For D1, H is convex iff D1  H, D1 ∩ H = P × 0, D1 ∩ H = D0, or D1 ∩ H = 0. 

 (3)  For D2, H is convex iff D2  H, D2 ∩ H = 0 × P, D2 ∩ H = D0, or D2 ∩ H = 0. 

 (4)  For D3, H is convex iff D3  H, D3 ∩ H = P × 0, D3 ∩ H = 0 × P, or D3 ∩ H = 0. 
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Proof.  (1)  The if part is obvious.  For the only if part, let H be D0-convex and D0 ∩ H ≠ 0.  Take (p0, p0)  D0 ∩ H with 

p0  P0.  For p  P0, let p < mp0 for some m  N.  Then (0, 0) ≤ (p, p) ≤ m(p0, p0)  D0 ∩ H.  Thus (p, p)  H.  Hence D0  H. 

 (2)  For the if part, let (0, 0) ≤ (x, y) ≤ (x′, y′)  D1 ∩ H.  For D1 ∩ H = P × 0, (x, y) = (x, 0)  P × 0  H, thus (x, y)  H.  For 

D1 ∩ H = D0, y′ − y ≤ x′ − x, but x′ = y′, so x ≤ y.  But y ≤ x.  Then x = y, thus (x, y)  H.  Hence H is convex.  For the other 

cases, obviously H is convex.  For the only if part, let us consider the following case: (i) D1 ∩ H = D0 ∩ H, or (ii) D1 ∩ H ≠ 

D0 ∩ H, but (ii′) p2(D1 ∩ H) ≠ 0 or (ii′′) p2(D1 ∩ H) = 0. 

 For (i), since H is D1-convex and D0  D1, H is D0-convex by (i).  Thus, by (1), D0  H or D0 ∩ H = 0, which implies 

D1 ∩ H = D0 or D1 ∩ H = 0 by (i). 

 For (ii), to see P × 0  H, let p  P0.  Take (t1, t2)  D1 ∩ H with t1 ≠ t2.  Let p < n(t1 − t2) for some n  N.  Then (0, 0) ≤ 

(p, 0) ≤ n(t1, t2)  D1 ∩ H.  Since H is D1-convex, (p, 0)  H.  This shows P × 0  H.  Now, for (ii′), to see 0 × P  H, let p  

P0.  Take (u1, u2)  D1 ∩ H with u2 ≠ 0.  Let p < iu2 for some i  N.  Then (0, 0) ≤ (p, p) ≤ i(u1, u2)  D1 ∩ H.  Then (p, p)  H.  

Thus, (0, p) = (p, p) − (p, 0)  H by P × 0  H in (ii).  This shows 0 × P  H.  Thus, D3 = (P × 0) + (0 × P)  H, hence D1  H.  

For (ii′′), D1 ∩ H  P × 0.  But, P × 0  D1, then P × 0  D1 ∩ H by (ii).  Thus D1 ∩ H = P × 0. 

 (3)  This is similarly shown as in (2), so we shall omit the proof. 

 (4)  The if part is routinely shown.  For the only if part, let us consider the following cases: (i) p1(D3 ∩ H) ≠ 0, p2(D3 ∩ H) ≠ 0 

(ii) p1(D3 ∩ H) ≠ 0, p2(D3 ∩ H) = 0 (iii) p1(D3 ∩ H) = 0, p2(D3 ∩ H) ≠ 0 (iv) p1(D3 ∩ H) = 0, p2(D3 ∩ H) = 0. 

 For (i), to see P × 0  H, let p  P0.  Take (v1, v2)  D3 ∩ H with v1 ≠ 0, and let p < kv1 for some k  N.  Then (0, 0) ≤ (p, 0) 

≤ k(v1, v2)  D3 ∩ H.  Since H is D3-convex, (p, 0)  H.  Hence P × 0  H.  Similarly, 0 × P  H.  Thus D3  H.  For (ii), 

P ×0  H, and D3 ∩ H  P ×0.  Thus D3 ∩ H = P ×0.  For (iii), similarly D3 ∩ H = 0 × P.  For (iv), obviously D3 ∩ H = 0. �

Corollary 3.2.  Let (R, S) be Archimedean, in particular R = Z.  For an ideal I of the (direct) product ring R × R, and the semi-

cones Di induced by S, the results in Theorem 3.1 remain true.

 Corollary 3.3 below is shown by (the the proof of) Theorem 3.1(2),(3) with Remark 2.3(1), here (ii) is essential in view of 

Remark 2.3(1).  The corollary is an improvement of [9, Proposition 3.23(2)].

Corollary 3.3.  Let (G, P) be Archimedean.  Then a subgroup of H of G × G is convex for D1 (resp. D2) iff (i) H satisfies (p1) 

and (p2), or (ii) D1 ∩ H = D0 (resp. D2 ∩ H = D0). 

Remark 3.4.  Let (R, ≤) be a partially ordered integral domain such that (*) for each non-zero element a  R, 0 < a2 (or 0 < aa′ 

for some a′  R).  In [3], we consider convexity of ideals of the polynomial ring R[x] with the ordinary order ≤1 or ≤2.  Note 

(R[x], ≤ 1) is non-Archimedean, here for f (x)  R[x], 0 < 1 f (x) if the leading coefficient of f (x) is positive in R.  Let (R[x], S) = 

(R[x], ≤ 1).  Let I be an ideal of the direct product ring R[x] × R[x].  Thus I = p1(I ) × p2(I ) with pi(I ) ideals.  For a non-zero, 

proper ideal I, the following hold. 

 (1)  For D0, I is convex iff p1(I ) ∩ p2(I ) ∩ S = 0 ( p1(I ) = 0 or p2(I ) = 0). 

 (2)  For D1, I is convex iff I = R[x] × 0 or I = 0 × p2(I ). 

 (3)  For D2, I is convex iff I = 0 × R[x] or I = p1(I ) × 0. 

 (4)  For D3, I is convex iff I = R[x] × 0 or I = 0 × R[x]. 

 Indeed, the if part is obvious.  To see the only if part, let I be Di-convex.  Suppose there exists f (x)  p1(I ) ∩ p2(I ) ∩ S0.  

Then (0, 0) ≤ (1, 1) ≤ (x f (x), x f (x))  I ∩ Di .  Thus (1, 1)  I, so I = R[x] × R[x], a contradiction.  Hence, p1(I ) ∩ p2(I ) ∩ S0 = 

.  Next, suppose p1(I ) ≠ 0 and p2(I ) ≠ 0.  Take ( f (x), g(x))  I ∩ (S0 × S0) by (*) and I = p1(I ) × p2(I ).  Then f (x)g(x)  

p1(I ) ∩ p2(I ) ∩ S0, a contradiction.  Thus (p1(I ) ≠ 0, p2(I ) = 0), or (p1(I ) = 0, p2(I ) ≠ 0).  But, for an ideal pi(I ) ≠ 0, pi(I ) is 

S-convex iff pi(I) = R[x] (actually, assume pi(I ) is S-convex.  Take f (x)  pi(I ) ∩ S0 by (*), then 0 ≤1 1 ≤1 x f (x)  pi(I ) ∩ S, 

thus 1  pi(I ) which yields pi(I ) = R[x]).  Hence, (1)(4) hold in view of the above. 
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４．Convexity of ideals in the product extension rings

 In this section, the the symbol R  R means the direct product ring of R (as in [5, 8]), but the symbol R × R denotes the 

(additive) group of the ring R  R. 

 The product extension ring (R  R; a, b) is a ring which is R × R as an additive group, and the following multiplication is 

given (in Section 1). 

(x1, y1) * (x2, y2) = (x1x2 + ay1y2, x1y2 + y1x2 + by1y2). 

Note that (R  R; a, b) has the identity (1, 0), and (0, 1) * (0, 1) = (a, b). 

 The product extension ring (R  R; 0, 0) is denoted by R  R (as in [5]). 

 The positive subsets Di  (except L) induced by S are semi-cones in R R.  However, each Di  or L need not be a semi-cone in 

(R  R; a, b) by the following Proposition 4.1 due to [6].  (For characterizations of semi-cones in Z (resp. Z  Z, Z  Z), see [3] 

(resp. [8])). 

Proposition 4.1.  For Di induced by S of R, the following hold in (R  R; a, b).  Obviously, for SS = 0, every Di except L is a 

semi-cone. 

 (1)  D0 is a semi-cone iff (a + 1)SS  S and (a − b − 1)SS = 0. 

 (2)  D1 is a semi-cone iff (b + 2)SS  S and (a − b − 1)SS  S. 

 (3)  D2 is a semi-cone iff aSS  S and (b − a)SS  S. 

 (4)  D3 is a semi-cone iff aSS  S and bSS  S. 

 (5)  L is a semi-cone iff aS = bSS = 0, S0S0 + aR  S0, and (S0 + bR)S  S. 

Remark 4.2.  (1)  If L is a semi-cone in (R  R; a, b), then S0S0  S0 (thus SS ≠ 0), and the converse holds if a = b = 0.  For 

S  1 (resp. R being an integral domain), L is a semi-cone iff a = b = 0 and S0S0  S0 (resp. a = b = 0).  For S  1, we can not 

omit “S0S0  S0” (by putting S = Z Z in R = Z  Z).  This suggests that we should delete “S  1” in [6, Corollary 2.7(3)(b)].

 (2) L is a cone in (R  R; a, b) iff a = b = 0, S is a cone in R, and S0S0  S0 (equivalently, R is an integral domain) by (1), but L 

is not even a semi-cone in R R.  Any Di  is not a cone in (R  R; a, b) or R R.  We note that there exist no cones in R R, 

namely, R R can not be an ordered ring ([4]).  A characterization for cones of K  K with K a field is given in [4]. We can 

replace “field” by “integral domain”. 

 In what follows, the symbol R′ means R  R, and the symbol P′ means 0×P in R′, here P is a positive subset of R. 

 Let f ′ : R → R′ be a group monomorphism defined by f ′(x) = (0, x).  Then f ′(P) = P′.  The symbol g′ means the following 

group monomorphism 

g′ = f ′ × f ′ : R × R → R′ × R′ defined by g′(x, y) = ((0, x), (0, y)). 

Remark 4.3.  (1)  The group monomorphism g′ : (R  R; a, b) → (R′  R′; a′, b′ ) is never a ring homomorphism (by 

g′((1, 0)  (1, 0)) ≠ g′(1, 0)  g′(1, 0) = 0).

 (2) Let us define g : (R  R; a, b) → (R′  R′; a′, b′ ) by g(x, y) = ((x, 0), (y, 0)).  Then g is a ring monomorphism.  But, for 

a non-zero ideal I of (R  R; a, b), g(I ) is never an ideal of (R′  R′; a′, b′) (actually, for a non-zero element (x, y)  I, 

g(x, y)  ((0, 1), (0, 0)) = ((0, x), (0, y))  g(I )).  For g′(I ) being an ideal, see Lemma 4.10 later.

 We note that the additive group of the ring R  R or (R  R; a, b) is the group R × R, and so is R′ × R′ for R′  R′ or 

(R′  R′; a′, b′).
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Proposition 4.4.  For the group monomorphism g′ : R × R → R′ × R′, let T be a positive subset of R × R (such as T = Di  induced 

by P), and let T′ = g′(T ).  Then the following hold. 

 (1)  T′ is a positive subset of R′ × R′.  Further, T′ is a semi-cone of R′  R′ as well as (any) (R′  R′; a′, b′ ) with T′T′ = 0. 

 (2)  (R × R, T ) is group embeddable in (R′ × R′, T ′ ) (in particular, let T = P × P and T′ = P′ × P′ ) via g′ : (R × R, T) → 

(R′ × R′, T′). 

Proof.  For (1), T′ is a positive subset of R′ × R′ by Proposition 2.1(1), putting h = g′, and T′T′ = 0 in R′ R′ or (R′  R′; a′, b′), 

noting (0 × R)  (0 × R) = 0 in R′.  (2) is obvious by T′ = g′(T ) with (1). �

Remark 4.5.  (1)  For the positive subsets Di  of R × R induced by P, let D′i  = g′(Di), and Di  be the positive subsets of R′ × R′ 

induced by P′.  Then D′i  = Di  .  Also, D′i  are semi-cones in (any) (R′  R′; a′, b′) by Proposition 4. 4(1).

 (2)  For the positive subset L of R × R induced by P, let L′ = g′(L), and L be the positive subset of R′ × R′ induced by P′.  

Then L′ = L∩g′(R × R).  Besides, L′ is a semi-cone by Proposition 4.4(1), but L is not a semi-cone in (any) (R′  R′; a′, b′) by 

Remark 4.2(1), noting P′  P′ = 0. 

 We recall that a  R (resp. a − b − 1  R) is a unit in R iff (0, 1) (resp. (1, 1)) is a unit in (R  R; a, b).

Lemma 4.6.  Let I be an ideal of (R  R; a, b).  Then the following hold as the sets Di  induced by P. 

 (1)  P × 0  I  D1  I  D3  I. 

 (2)  If a  R is a unit, 0 × P  I  D2  I  D3  I. 

 (3)  If a − b − 1  R is a unit, D0  I  D1  I  D2  I  D3  I. 

Proof.  For (1), assume P × 0  I.  To see D3  I, let (s, t)  D3.  Then (s, 0), (t, 0)  I (by P × 0  I).  But, (0, t)  I, noting 

(x, 0) (0, 1) = (0, x).  Hence (s, t) = (s, 0) + (0, t)  I.  Similarly, (2) holds, noting (x, 0) = (0, x) (0, 1)−1, and (3) holds, noting 

(x, 0) = (x, x)  (1, 1)−1. �

 In Theorem 4.7 below, (1) holds by Theorem 3.1 with Lemma 4.6.  (2) holds by Proposition 4.4(1) with (1), noting (R′, P′) is 

Archimedean.  (1) is a generalization of [9, Theorem 4.5], where I is generated by a single element in (Z  Z; a, b). 

Theorem 4.7.  The following hold.

 (1)   Let (R, S) be Archimedean.  For an ideal I of (R  R; a, b), the following hold, but we assume Di  are semi-cones induced 

by S. 

  (a)  For D0, I is convex iff D0  I or D0 ∩ I = 0. 

  (b)  For D1, I is convex iff D1  I , D1 ∩ I = D0, or D1 ∩ I = 0. 

  (c)  For D2, I is convex iff D2  I, D2 ∩ I = 0 × S, D2 ∩ I = D0, or D2 ∩ I = 0. 

  (d)  For D3, I is convex iff D3  I, D3 ∩ I = 0 × S, or D3 ∩ I = 0. 

   (For a  R being a unit, we can delete D2 ∩ I = 0×S in (c), and D3 ∩ I = 0×S in (d).  For a−b−1  R being a unit, we can 

delete D1 ∩ I = D0 in (b), and D2 ∩ I = D0 in (c)). 

 (2)   Let (R, P) be Archimedean.  Let Di be the positive subsets of R × R induced by P.  Then, for an ideal I′ and semi-cones D′i  

= g′(Di) induced by P′ in (R′  R′; a′, b′), the results in (1) remain true, replacing “S” by “P”, and adding the prime “ ′ ” 

on the symbols (such as a′  R′). 

Remark 4.8.  In Theorem 4.7, let I1 = I ∩ (S × 0), I2 = I ∩ (0 × S). Then we have the following in (R  R; a, b) and its (systematic) 

analogue in (R′  R′; a′, b′) (under the same assumptions there).

 (1)  For D1, I is convex with I1 ≠ 0 iff D1  I.
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 (2)  For D2, I is convex with I2 ≠ 0 iff D2  I or D2 ∩ I = 0 × S.  (For a  R being a unit, D2 ∩ I = 0 × S is deleted).

 (3)  For D3, I is convex with I1 ≠ 0 iff D3  I.

 (For R = Z, I1 ≠ 0 (resp. I2 ≠ 0) iff I′1 = I ∩ (Z × 0) ≠ 0 (resp. I′2 = I ∩ (0×Z) ≠ 0) (indeed, for I′1 ≠ 0, take m, n  N with (m, 0) 

 I and n  S0, then (mn, 0)  I1, thus I1 ≠ 0)).

Remark 4.9.  The following in [9, Proposition 3.11] is also shown by Remark 4.8(2), and its (systematic) analogue in 

(R′  R′; a′, b′) holds under a′ = 1′. 

 (Proposition) For an ideal I of (Z  Z; a, b) with a = 1 ≤ b (hence D2 is a semi-cone by Proposition 4.1), I is D2-convex with 

I′2 = I ∩ (0 × Z) ≠ 0 iff D2  I. 

 a = 1 is essential for the only if part (by an ideal I = 0 × Z of (Z  Z; a, b) with a = 0 ≤ b), and I′2 ≠ 0 is also essential by I = 0 

(cf. [9, Remark 3.12(1)]). We note that there exist no examples of I ≠ 0 under () a = 1, b ≠ 0 by the following fact.

 (Fact) For an ideal I of (Z  Z; a, b) with (), I′2 = 0 iff I = 0 ( p2(I′2) = 0).

 (Indeed, the if part is clear, so assume I′2 = 0. Since Z is a principal ideal domain, I = (m, k) (Z × 0) + (0, n) (Z × 0) for 

some m, n, k  Z by [5, Proposition 3.8]. Then n = 0 by I′2 = 0. Since (m, k)  (0, 1)  I and a = 1, we have k = mx, m + bk = kx 

for some x  Z. Then m(x2 − bx − 1) = 0.  But d = x2 − bx − 1 ≠ 0 by b ≠ 0, noting for d = 0, 2x = (b ± 
√

b2 + 4 )  Z.  Thus m = 

0, and k = 0. Hence I = 0).

Lemma 4.10.  Let g′ : (R  R; a, b) → (R′  R′; a′, b′) be the group monomorphism with a′ = (c, d), b′ = (e, f )  R′. Let I be an 

ideal of (R  R; a, b), and I = g′(I ) (thus I  I = 0). Then I is a (proper) ideal of (R′  R′; a′, b′) iff (C)   ((a − c)y, (b − e)y)  I 

for any y  p2(I ) ( (cy, x + ey)  I for any (x, y)  I ) holds. Thus, I is an ideal for (a − c, b − e)  I (specially, c = a and 

e = b).

Proof.  Obviously, I  I = 0. For x, y, xi , yi   R,

      g′(x, y)  ((x1, x2), (y1, y2))     =    ((0, x), (0, y))  ((x1, x2), (y1, y2))

    =    ((0, z1), (0, z2)) = g′(z1, z2)

in (R′  R′; a′, b′), here z1 = xx1 +cyy1, z2 = yx1 +xy1 +eyy1.  Also, for (x, y)  I, (x, y)  (x1, y1) = (z1, z2) + ((a − c)yy1, (b − e)yy1) 

 I. Since I is an ideal, g′(I ) is an ideal  g′(z1, z2)  g′(I ) (i.e., (z1, z2)  I ) for any (x, y)  I, x1, y1  R  

((a − c)yy1, (b − e)yy1)  I for any y1  R, y  p2(I )  (C). For the parenthetic part, note (cy, x + ey) = (x, y)  (0, 1) − 

((a − c)y, (b − e)y) in (R  R; a, b). �

 For a finitely generated ideal I0 = 
∑n

i=1  (ui , vi)(R  R; a, b) of (R  R; a, b) with ui , vi   R, let us define the following 

finitely generated ideals of (R′  R′; a′, b′):

 I0 = 
∑n

i=1  (u′i , v′i) (R′  R′; a′, b′), where u′i  = (0, ui), v′i  = (0, vi), a′ = (a, c), b′ = (b, d)  R′ (c, d  R).

 I′0 = 
∑n

i=1  (u′i , v′i) (R′  R′; a′, b′), where u′i  = (ui , 0), v′i  = (vi , 0), a′ = (a, 0), b′ = (b, 0)  R′.

 Hereafter, the symbols I0, I0 , and I′0 mean these finitely generated ideals.

Lemma 4.11.  Let g′ : (R  R; a, b) → (R′  R′; a′, b′) be the group monomorphism. Then the following hold for I0 in 

(R  R; a, b), and I0 , I′0 in (R′  R′; a′, b′).

 (1) I0  = g′(I0) under a′ = (a, c), b′ = (b, d)  R′ (c, d  R).

 (2) I′0 ∩ (R0 ×R0) = g′(I0) under a′ = (a, 0), b′ = (b, 0)  R′, here R0 = 0×R.
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Proof. (1) holds, noting the following holds in (R′  R′; a′, b′).

  ((0, u), (0, v))  ((x1, x2), (y1, y2)) = ((0, z1), (0, z2)) = g′((u, v)  (x1, y1)),

here z1 = ux1 + avy1, z2 = vx1 + (u + bv)y1 as in the proof of Lemma 4.10.

 For (2), the following () and () hold in (R′  R′; a′, b′).

()   ((u, 0), (v, 0))  ((x1, x2), (y1, y2)) = ((z1, z2), (w1, w2)),

()  ((u, 0), (v,0))  ((0, x2), (0, y2)) = ((0, z2), (0, w2)) = g′((u, v)  (x2, y2)),

here z1 = ux1 + avy1, z2 = ux2 + avy2, w1 = vx1 + (u + bv)y1, w2 = vx2 + (u + bv)y2.

Then (2) holds (indeed, g′(I0)  I′0 ∩ (R0 × R0) by (). For I′0 ∩ (R0 × R0)  g′(I0), let ((0, x), (0, y)) = 
∑n

i=1  ((ui , 0), (vi , 0))  

((xi1, xi2), (yi1, yi2))  I′0.  Then x = 
∑n

i=1  zi2, y = 
∑n

i=1  wi2 by (), here zi2 = uixi2 + aviyi2, wi2 = vixi2 + (ui  + bvi)yi2.  Thus 

((0, x), (0, y)) = 
∑n

i=1  g′((ui , vi)  (xi2, yi2))  g′(I0) by ()). �

 For convexity of an ideal I of (R  R; a, b) for Di  induced by S, we assume Di  are semi-cones in [7, 9] (in view of Proposition 

4.1), but we assume the following.

 We consider an ideal I (resp. subsets Di  induced by S) in (R  R; a, b) as a subgroup (resp. the positive subsets induced by P) 

in the (additive) group R × R of (R  R; a, b), unless otherwise stated.

Theorem 4.12.  For the group embedding g′ : ((R  R; a, b), P × P) → ((R′  R′; a′, b′), P′ × P′), let D′i  = g′(Di). Then the 

following hold.

 (1)   D′i  are semi-cones in (R′  R′; a′, b′) induced by P′ with D′i   D′i  = 0.  Moreover, ((R  R; a, b),Di) are group embeddable 

in ((R′  R′; a′, b′),D′i) via g′ : ((R  R; a, b), Di) → ((R′  R′; a′, b′), D′i).

 (2)   For an ideal I of (R  R; a, b), suppose I = g′(I ) is an ideal of (R′  R′; a′, b′) with a′ = (c, d), b′ = (e, f )  R′ (equivalently, 

((a − c)y, (b − e)y)  I for any y p2(I)). Then the following (a) and (b) hold.

    (a)  I is convex for Di iff I is convex for D′i .

    (b)  I satisfies (p1) (resp. (p2)) for Di  iff I satisfies (p′1) (resp. (p′2)) for D′i , here ≤ = ≤P′ in (p′i).

 (3)   Let I0 in (R  R; a, b). For I0 (resp. I′0) in (R′  R′; a′, b′), let a′ = (a, c), b′ = (b, d) R′ (c, d  R) (resp. a′ = (a, 0), 

b′ = (b, 0)  R′). Then for I0, and I0 (resp. I′0), (a) and (b) in (2) also hold.

Proof. (1) holds by Proposition 4.4. (2) holds by Theorem 2.4 with Lemma 4.10, noting () g′(I ∩ (P × P)) = I ∩ g′(P × P), and 

f ′ (P) = P′ in (b). For (3), in () we can put I = I0, and I = I0 or I′0 by Lemma 4.11.  �

 Related to Theorem 4.12(2),(3), let us give the following example.

Example 4.13.  (1) For I0 in (Z  Z; a, b), g′(I0) need not be an ideal of (Z′  Z′; a′, b′) (indeed, let I0 = (2, 1)  (Z  Z) = 

{(2x, x + 2y) | x, y  Z}, and a′ = b′ = 1′ = (1, 0)  R′. Then ((0, 2), (0, 1))  g′(I0), but ((0, 2), (0, 1))  (0, 1′) = ((0, 1), (0, 3))  

g′(I0)).

 (2) Let us give examples to (i)  (iv) for I0, and the positive subsets Di  in the group Z × Z of (Z  Z; a, b) below. Then, by 

Theorem 4.12(3), we have the similar examples to (i)  (iv) for I0 (resp. I′0) and semi-cones D′i  = g′(Di) in (Z′  Z′; a′, b′), here 

a′ = (a, c), b′ = (b, d)  Z′ (c, d  Z) (resp. a′ = (a, 0), b′ = (b, 0) Z′)

 (i) I0 is D0-convex, but I0 is neither D1-convex nor D2-convex. (ii) I0 is D1-convex, but I0 is not D2-convex. (iii) I0 is 

D2-convex, but I0 is not D1-convex. (iv) I0 is D3-convex, thus Di-convex. (Obviously, I0 is D0-convex in (ii), (iii), but I0 is not 
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D3-convex in (i), (ii), (iii)).

 To see (i)  (iv), let Di  be the positive subsets induced by P = 2Z.

 For (i), let I0 = (1, 1)  (Z  Z;−2, 2) = {(x − 2y, x + 3y) | x, y  Z}. Then I0 is D0-convex by D0  I0. But, I0 is not D1-convex 

(by (0, 0) ≤ (2, 0) ≤ (10, 0)  I0, but (2, 0)  I0). Similarly, I0 is not D2-convex.

 For (ii), let I0 = (0, 4)  (Z  Z; 0,−3) = {(0, 4x) | x  Z}. Then I0 is D1-convex by I0 ∩ D1 = 0, but I0 is not D2-convex (by 

(0, 0) ≤ (0, 2) ≤ (0, 4)  I0, but (0, 2)  I0).

 For (iii), let I0 = (5, 1)  (Z  Z; 5,−4) = {(5x, x) | x  Z}. Then I0 is D2-convex by I0 ∩ D2 = 0, but I0 is not D1-convex (by 

(0, 0) ≤ (2, 0) ≤ (10, 2)  I0, but (2, 0)  I0).

 For (iv), let I0 = (1, 1)  (Z  Z; 0, − 3) = {(x, x − 2y) | x, y Z}. Then I0 is D3-convex by I0  D3.

 In the above (i)  (iv), any Di  induced by S = 2Z is not a semi-cone in the respective ring (Z  Z; a, b) (actually, for

(2, 2)  Di , (2, 2)  (2, 2)  Di).

 Finally, in terms of condition (p1) or (p2), we give the following observation. (1) is shown in [7, 9], but (b)(ii) holds by 

Corollary 3.3 with (b)(i). (2), (3) hold by Theorem 4.12.

Observation 4.14.  (1) The following hold in (R  R; a, b), but assume that Di  are semi-cones induced by S.

 (a) Let I be an ideal of (R  R; a, b) with I = p1(I) × p2(I). For Di , I satisfies (p1) and (p2) iff I is convex. (We note that for an 

ideal I of R R, I = p1(I )×p2(I ), Di  induced by S are semi-cones, and the above result remains true in R  R).

 (b) Let I be an ideal of (R  R; a, b). Then the following hold.

 (i) For D0 (resp. D1; D2), if I satisfies (p1) (resp. (p1); (p1) and (p2)), then I is convex. These converses hold if a − b − 1  R is 

a unit, but assume SS = 0 for D0 (for other conditions to the converses for D1 or D2, see [9, Proposition 3.21]). For D3, I satisfies 

(p1) and (p2) iff I is convex. We note (i′), (ii′), and (iii′) below.

 (i′) For D0 or D1, (p1) implies (p2). (ii′) For D2 or D3, (p1) need not imply (p2) or convexity of I. (iii′) For each Di , (p2) need 

not imply (p1) or convexity of I. 

 (Indeed, for (i′), to see (p2), let 0 ≤ x ≤ y  p2(I ∩ Di) (i = 0, 1). Then 0 ≤ x ≤ x′  p1(I ∩ Di) for some (x′, y)  I ∩ Di . Thus 

(x, 0)  I by (p1), so (0, x) = (x, 0)  (0, 1)  I. For (ii′) (resp. (iii′)), consider an ideal I = 0 × 4Z (resp. I = 4Z × Z) and Di  

induced by S = 2Z in (Z  Z; 0, b) (here, D0, D1 are semi-cones for b = −1, and so are D2, D3 for b  Z by Proposition 4.1)).

 (ii) Suppose (R, S) is Archimedean. Then, for D1 (resp. D2), I is convex iff I satisfies (p1) or D1 ∩ I = D0 (resp. (p1) and (p2), 

or D2 ∩ I = D0).

 (2) For an ideal I′ and semi-cones D′i  = g′(Di) in (R′  R′; a′, b′ ), the results in (1) remain true, replacing “ S ” by “ P ”, and 

adding the prime “ ′ ” on the symbols, here we can delete “SS = 0 for D0” in (b)(i). (For an ideal I′ of R′  R′, the similar holds 

for the parenthetic part in (a) by Proposition 4.4(1)).

 (3) Let I be an ideal of (R  R; a, b). For I0 (resp. I′0) in (R′  R′; a′, b′), let a′ = (a, c), b′ = (b, d)  R′ (c, d  R) (resp. a′ =

(a, 0), b′ = (b, 0)  R′). Suppose I = g′(I ) is an ideal of (R′  R′; a′, b′ ), in particular I = I0 = g′(I0). Then I  (resp. I0) satisfies (pj) 

for Di  iff I (resp. I′0) satisfies (p′j) for D′i  (= g′(Di)), here j = 1, 2. Also, applying this to (2), we have the following: 

 For D1, if I  (resp. I0) satisfies (p1), then I (resp. I′0) is convex for D′1. The converse holds if a′ − b′ − 1′  R′ is a unit, or 

D′1 ∩ I ≠ D′0 (resp. D′1 ∩ I′0 ≠ D′0) with (R′, P′ ) Archimedean. For the other Di , some applications to (2) will be similarly 

obtained.
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積拡大環における凸イデアル

北　村　　　好＊・田　中　祥　雄＊

数学分野

要　　旨

　半順序環における凸イデアルは，それらの剰余環に自然に誘導された半順序を与える ([1])。半順序群における凸部
分群に対しても同様である。環や群における半順序はそれぞれ半コーン ([2,3]) や正集合 ([4]) によって決定される。
本稿では，標準的な正集合をもつ直積群における部分群の凸性について，特徴付けを与える。さらに，それらの正集
合に類似型の半コーンをもつ積拡大環の構成方法を与え，そこにおけるイデアルの凸性を考察する。

キーワード: 直積群，積拡大環，半順序，正集合，半コーン，凸部分群，凸イデアル，単射群準同型
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