広視野カメラ KWFC を搭載した木曽 105 cm シュミット望遠鏡の システム変換

吉田 悠人^{*1}・土橋 一仁^{*1}・上原 隼^{*1,*2}・西浦 慎悟^{*1} 遠藤 修弘^{*1}・平原 純一^{*1}・下井倉 ともみ^{*1,*3}・直井 隆浩^{*4}

宇宙地球科学分野

(2019年5月23日受理)

YOSHIDA, Y., DOBASHI, K., UEHARA, H., NISHIURA, S., ENDO, M., HIRAHARA, J., SHIMOIKURA, T., and NAOI, T.: System Transformation of the Kiso Wide Field Camera (KWFC) installed on the 105 cm Schmidt Telescope at the KISO Observatory. Bull. Tokyo Gakugei Univ. Div. Nat. Sci., **71**: 49–55. (2019) ISSN 2434–9380

Abstract

We report on the system transformation from the Kiso 105 cm Schmidt Telescope system equipped with the Kiso Wide Field Camera (KWFC) to the standard Johnson-Cousins system. To formulate the transformation, we utilized the database of the Pan-STARRS1 1.8m telescope located on Haleakara (Hawaii). The resulting transformation formulae are expressed as a linear function of color (B-V) or (R-I), and they can be used to transform the magnitudes of the Kiso system to those of the Johnson-Cousins system in the BVRI bands. We also discuss the main sources of the errors in the derived formulae.

Keywords: astronomy, telescope, stars, system transformation

Department of Astronomy and Earth Sciences, Tokyo Gakugei University, 4–1–1 Nukuikita-machi, Koganei-shi, Tokyo 184–8501, Japan

要旨: この論文では、木曽広視野カメラ(KWFC)を搭載した木曽観測所の105 cm シュミット鏡の観測システム(木曽システム)について、標準測光システムであるジョンソン・カズンズシステムへの変換式を報告する。変換式の構築には、ハワイ州ハレアカラ山頂に設置された1.8 m 鏡(Pan-STARRS1)による公開データを比較対象として利用した。これにより、星の色指数(B-V及び R-I)の一次関数として、木曽システムでの等級からジョンソン・カズンズシステムでの等級を計算するための変換式を、BVRIバンドについて定式化した。また、変換係数の主な誤差とその原因について考察した。

^{*1} 東京学芸大学 自然科学系 宇宙地球科学分野(184-8501 小金井市貫井北町 4-1-1)

^{*2} 桐朋中学校·高等学校(186-0004 東京都国立市中3丁目1-10)

^{*3} 大妻女子大学 社会情報学部 社会情報学科 (102-8357 東京都千代田区三番町 12 番地)

^{* 4} 情報通信研究機構 電磁波研究所 宇宙環境研究室(184-8795 小金井市貫井北町 4-2-1)

1. はじめに

この論文では、木曽観測所の105 cm シュミット望 遠鏡(以後、木曽シュミット鏡)と広視野カメラ (Kiso Wide Field Camera,以後、KWFC)から成る観 測システム(以後、木曽システム)の標準測光システ ムへの変換式について報告する。KWFC は2kCCDカ メラの後継機として開発され、2012 年から2017 年ま で木曽シュミット鏡の主力検出器として使用された。 KWFC は8枚の CCD から構成され、Bバンドで約 22 等の限界等級をもち、一度に約2°×2°の領域を撮 像できる視野を有する。

木曽シュミット鏡の広い視野は、広がった暗黒星雲 の撮像観測に適している。我々は、2000年から2011 年の期間, KWFC の前身である 2kCCD カメラを用い て、おうし座やオリオン座などの暗黒星雲の広域多波 長撮像観測(BVRI)に取り組んだ(例えば, Kandori et al. 2003)。さらに、2016年から2017年の期間も、 検出器を KWFC に変更して観測を継続した。この研 究の目的は、得られた星の測光データから E(B-V) や E(R-I)といった色超過マップを作成し,暗黒星雲内 外におけるダストの光学的性質の変化を調査すること である (例えば、吉田 2019)。研究を遂行するために は、木曽システムで得られた星の等級を標準システム (ジョンソン・カズンズシステム) での等級に変換す る必要がある (例えば、市川 1997)。一般に、ある観 測システムから標準システムへの変換式を確立するた めには、各バンドでの等級が既にわかっている様々な 色の測光標準星を多数観測する必要がある。測光標準 星のカタログとしては Landolt (1992, 2009) が作成 したものが有名であるが、Landoltのカタログに記載 されている標準星は天球の赤道に沿って赤経約 lh 毎 に数個から数十個程度分布しているにすぎない。シス テム変換式の確立のためには、測光夜にそれらを異な る天頂距離で次々と観測してエアマス・プロットを作 成しなければならない。しかし, 共同利用等の限られ た観測時間内に、大気の状態(減光係数)が不安定に なりがちな日本国内の観測所でそのような測光観測を 実現することは、容易ではない。

最近になり,赤緯-30°以上の天空を網羅する Panoramic Survey Telescope and Rapid Response System (通称 Pan-STARRS1,例えば Hoddap et al. 2004)で取得された星の測光データが公開された。 そのデータを標準システムでの等級に変換するための 計算式も公開されている (Tonry et al. 2012)。エアマ ス・プロットさえ作成すれば、この星のデータベース を利用して,天球の任意の領域で木曽システムのシス テム変換式を確立することができるはずである。本論 文では,このような発想のもと,上記の暗黒星雲の多 波長観測のためのシステム変換式の構築を行った。本 論文では,KWFCの標準システムへの変換式につい て報告する。2kCCDカメラの変換式も,同様の方法 で構築した。その結果については,この東京学芸大学 紀要に掲載されている別の論文(上原ほか 2019)で 述べる。

本論文の第2章では、木曽シュミット鏡での観測 と使用した Pan-STARRS1 のデータについて述べる。 第3章では、解析方法と結果について述べる。本論 文のまとめを、第4章に示す。

2. 使用データ

2.1 木曽シュミット鏡による観測

KWFC は, SITe 社製の4枚の CCD と, MIT 社製 の4枚の CCD から構成されている。それらの天球上 での配置を,図1の模式図に示す。各 CCD は 4196 ×2100 個のピクセルをもち,ピクセルスケールは 0.94″/pix である。1枚の CCD で天球上の約1°×0.5° の範囲をカバーできる。赤経方向に 60″,赤緯方向に 90″の隙間を設けて配置された合計 8 枚の CCD で,約2°×2°範囲を一度にカバーできる。

KWFC のシステム変換式を構築するための観測は、

図1 KWFCの模式図と天球上で各 CCD の配置。

В	V	R	Ι
2017年2月14日	2017年2月15日	2016年12月28日	2016年12月28日
KWFC0163397	KWFC0163599	KWFC0157862	KWFC0157877
KWFC0163400	KWFC0163602	KWFC0157865	KWFC0157882
KWFC0163401	KWFC0163614	KWFC0157870	KWFC0157885
KWFC0163404	KWFC0163615	KWFC0157873	KWFC0157891
KWFC0163405	KWFC0163618	KWFC0157878	KWFC0157895
KWFC0163408	KWFC0163619	KWFC0157881	KWFC0157900
KWFC0163409	KWFC0163622	KWFC0157886	KWFC0157903
KWFC0163414	KWFC0163623	KWFC0157890	KWFC0157908
KWFC0163417	KWFC0163626	KWFC0157896	KWFC0157911
KWFC0163422	KWFC0163627	KWFC0157899	KWFC0157916
KWFC0163425	KWFC0163630	KWFC0157904	KWFC0157919
KWFC0163426	KWFC0163631	KWFC0157907	KWFC0157924
KWFC0163431	KWFC0163634	KWFC0157912	KWFC0157927
KWFC0163434	KWFC0163635	KWFC0157915	KWFC0157932
KWFC0163435	KWFC0163638	KWFC0157920	KWFC0157935
KWFC0163437	KWFC0163640	KWFC0157923	KWFC0157940
	KWFC0163643	KWFC0157928	KWFC0157943
	KWFC0163644	KWFC0157931	KWFC0157948
	KWFC0163647	KWFC0157936	KWFC0157951
	KWFC0163650	KWFC0157939	
	KWFC0163653	KWFC0157944	
	KWFC0163656	KWFC0157947	
	KWFC0163658	KWFC0157952	
		KWFC0157955	

表1 観測日とスキャン番号

BVRI の4バンドについて行った。BバンドとVバン ドのデータは2017年2月14日と15日にそれぞれ取 得し,RバンドとIバンドのデータは両者とも2016 年12月28日に取得した。露光時間は,BVRIバンド の順に,100秒・60秒・15秒・45秒である。オリオ ン座の赤経 $5^{h}45^{m}$ ・赤緯 $-5^{\circ}54'$ (2000年分点)の観 測点をKWFCの視野中心におき,天頂距離を変えな がら撮像観測を行い,データを取得した。得られた データのスキャン番号を,表1にまとめる。

データの整約と解析は、標準的な方法で行った。ま ず、取得した各 CCD の画像データからバイアスを引 き、積分時間で規格化し、フラットフィールドで除し て、画像データの整約を行った。次に、整約した画像 データに写っている星を検出し、測光を行った。測光 は、まず周囲に他の星のない孤立した星に対して開口 測光を行い、さらに開口測光が難しい星(近傍に別の 星があるもの)を含む全ての星に対してガウス関数型 の Point Spread Function (PSF)を仮定した PSF フィッ ト法による測光を行った。PSF 法により得られた星の フラックスを開口測光で得られたものと比較し、全て の星について開口測光相当のフラックスを得た。

検出した星の天球座標は、2 Micron All Sky Survey (2MASS) による点源カタログ (Skrutskie et al. 2006) とのマッチングをとることにより、1″以内の精度で 測定した。

以上の一連の解析は, Interactive Data Language (IDL)を用いて行った。

2.2 Pan-STARRS1 の星のデータ

システム変換式を求めるための比較データとして、 Pan-STARRS1 によるデータを使用した(例えば、 Hoddap et al. 2004)。Pan-STARRS は4台の望遠鏡で 継続的に全天サーベイを行い、突発天体や移動天体を 検出する計画である。ハワイ州マウイ島のハレアカラ 山頂に設置された口径 1.8mの初号機 Pan-STARRS1 は3°×3°以上の広い視野を有し、ハワイから観測可 能な全天の 3/4 の恒星のデータを既に取得している。 また、標準システムであるジョンソン・カズンズシス テムへの変換式も公開されている(Tonry et al. 2012)。我々は、そのデータベース(https://catalogs. mast.stsci.edu/)から木曽シュミット鏡で観測した領 域の星のデータをダウンロードし、ジョンソン・カズ ンズシステムの等級に変換して、KWFCのデータと の比較に用いた。

3. システム変換式の導出

3.1 大気圏外等級の測定

以下では、Bバンドのデータを例にとり解析手順を 説明する。まず、木曽システムのBバンドで検出し た星のカウントをDとして、全ての星について機械 等級 B_mを以下のように定義した。

$$B_m = -2.5 \log D + 25 mag$$
 (1)

観測時の天頂距離を Z とすると, B_m は木曽システ ムでの大気圏外等級 B_k と, 次の式で表される関係に ある。

$$\mathbf{B}_{\mathrm{m}} = \mathbf{B}_{\mathrm{k}} + \mathbf{k}_{\mathrm{B}} \mathbf{F}(\mathbf{Z}) \tag{2}$$

ここで、 k_B は B バンドでの減光係数であり、F(Z)は空気量(エアマス)である。F(Z)は、以下のように近似できる(例えば、安田 2007)。

$$F(Z) = \sec Z - 0.0018167(\sec Z - 1)$$

- 0.002875(secZ - 1)²
- 0.0008083(secZ - 1)³ (3)

測定結果の例として、5番目のCCD(以後,CCD5) で検出したある星について、縦軸に B_m 、横軸にF(Z)をとったプロットを、図2に示す。式(2)で表した 通り、データ点を直線でフィットした時の傾きが k_B であり、切片が B_k である。

図2 エアマス・プロットの例。CCD5 で検出したある 星のBバンドでのエアマス・プロット。縦軸は機械等級 B_m, 横軸は天頂距離Zにおける空気量F(Z)。直線はデー タ点の直線フィットで, 直線の傾きが減光係数k_Bである。

 k_B は、ばらつきが大きいので、多数の星について 図 2 と同様のプロットを作成して測定を行い、平均 値を求めなければならない。 k_B の頻度分布の例を、 図 3 に示す。この図の例では、321 個の星について k_B の測定を行い、平均値 0.201、標準偏差 0.066 とい う結果を得た。

 k_B のばらつきは、単に偶然誤差だけではなく、星 本来の色指数のばらつきによる有効波長のずれにも起 因するものと考えられる。上記のようにして求めた k_B の平均値を使い、各Zでの B_m の測定値より式(2) を使ってそれぞれ B_k を計算し、 B_k の平均値をその星 の大気圏外等級として採用した。

以上の測定を、CCD0~7の全てのCCDで全ての バンドについて行い、木曽システムでの機械等級 B_m 、 V_m , R_m , I_m のデータから大気圏外等級 B_k , V_k , R_k , I_k と観測時の減光係数 k_B , k_V , k_R , k_I を計算した。 得られた減光係数を、表2にまとめる。

図3 減光係数の頻度分布の例。測定した全ての天頂距離 Z で CCD5 の B バンドで検出できた星は 321 個である。 それらの減光係数 k_Bの平均値は 0.201 であり,標準偏差 は 0.066 である。

CCD	$k_{\rm B}$ (mag)	$k_{\rm v}$ (mag)	$k_{\rm R}$ (mag)	$k_{\rm I}$ (mag)
0	0.190 ± 0.005	0.180 ± 0.002	0.040 ± 0.004	0.047 ± 0.003
1	0.234 ± 0.008	0.172 ± 0.003	0.042 ± 0.002	0.044 ± 0.003
2	0.167 ± 0.004	0.190 ± 0.002	0.053 ± 0.002	0.039 ± 0.002
3	0.243 ± 0.006	0.166 ± 0.002	0.047 ± 0.002	0.027 ± 0.004
4	0.183 ± 0.005	0.148 ± 0.002	0.042 ± 0.002	0.034 ± 0.006
5	0.201 ± 0.004	0.198 ± 0.003	0.038 ± 0.002	0.018 ± 0.003
6	0.284 ± 0.005	0.222 ± 0.002	0.025 ± 0.002	0.041 ± 0.004
7	0.094 ± 0.005	0.323 ± 0.004	0.048 ± 0.002	0.028 ± 0.003

表2 測定時の減光係数

3.2 システム変換係数の測定

Pan-STARRS1 から求めたジョンソン・カズンズシ ステムでの等級をそれぞれ B_p , V_p , R_p , I_p とする。 これらと木曽システムでの大気圏外等級は、それぞれ 下記のシステム変換式に従うものとする。

$\mathbf{B}_{\mathrm{p}} = \mathbf{B}_{\mathrm{k}} + \alpha_{\mathrm{B}}(\mathbf{B}_{\mathrm{k}} - \mathbf{V}_{\mathrm{k}}) + \beta_{\mathrm{B}}$	(4)
$V_p = V_k + \alpha_v (B_k - V_k) + \beta_v$	(5)
$R_{\rm p} = R_{\rm k} + \alpha_{\rm R}(R_{\rm k} - I_{\rm k}) + \beta_{\rm R}$	(6)

 $\mathbf{R}_{\mathrm{p}} = \mathbf{R}_{\mathrm{k}} + \alpha_{\mathrm{R}}(\mathbf{R}_{\mathrm{k}} - \mathbf{I}_{\mathrm{k}}) + \beta_{\mathrm{R}} \qquad (6)$

 $\mathbf{I}_{\mathbf{p}} = \mathbf{I}_{\mathbf{k}} + \boldsymbol{\alpha}_{\mathbf{I}}(\mathbf{R}_{\mathbf{k}} - \mathbf{I}_{\mathbf{k}}) + \boldsymbol{\beta}_{\mathbf{I}}$ (7)

ここで、 $\alpha_{\rm B} \sim \alpha_{\rm I}$ 及び $\beta_{\rm B} \sim \beta_{\rm I}$ は、システム変換のための係数である。

CCD5 の B バンドで検出された星についてのデー タ例を,図4に示す。図では、縦軸に $B_p - B_k$,横軸に $B_k - V_k$ をとっている。これを式(4)に従う直線で フィットし、 $\alpha_B = 0.140 \pm 0.015$ 、 $\beta_B = -0.19755 \pm 0.012$ mag、という結果を得た。同様の解析を、CCD0~7

図4 CCD5のBバンドで検出された星についての等級 差対色指数の例。縦軸は Pan-STARRS1のデータから求 めたジョンソン・カズンズシステムでの等級 B_pと木曽シ ステムでの大気圏外等級 B_kの差, 横軸は木曽システムで の色指数 B_k-V_k。直線はフィットの結果。直線の傾きは $\alpha_{\rm B}$ = 0.140,切片は $\beta_{\rm B}$ = -1.975 mag となった。

の全ての CCD で全てのバンドについて行い,係数 $\alpha_{\rm B}$ ~ $\alpha_{\rm I}$ 及び $\beta_{\rm B}$ ~ $\beta_{\rm I}$ を測定した。得られた結果を,表3, 表4,表5,及び表6に,バンド毎にまとめる。また, 測定に使用した星の色指数の範囲を,これらの表の最 後の列に示す。

3.3 測定結果の不確かさ

表2を見ると、CCD7のBバンドの減光係数は他のCCDの値と比べて小さな値をとっている。CCD7 はリニアリティーに多少問題があり、入射光量に対し てその応答(カウント値)が比例していない可能性が ある。

また、システム変換係数については、CCD1のB バンド(表3)及びRバンド(表5)のαの値が、同 じバンドの他のCCDの値と比べてやや異なっている。 これは、CCD1の特にBバンドのフィルターカーブ が、他のCCDと多少異なることが原因である可能性 が考えられる。また、KWFCのCCDは、全て、1枚 のCCDの上半分と下半分で異なる読み出し回路を使 用しており、観測直後の生データではバイアスレベル がCCDの上半分と下半分で明らかに異なる場合があ る。整約後のデータについては、全てのCCDで上下 の感度が0.1mag程度以下の精度で一致していること を確かめているが、CCD1については、僅かな差が 残っている可能性がある。

4. まとめ

本研究では、Pan-STARR1のデータを利用して、 KWFCを搭載した木曽シュミット鏡の観測システム (木曽システム)の標準測光システム(ジョンソン・ カズンズシステム)へのBVRIバンドについての変換 式の構築を行った。BVバンドについては色指数

東京学芸大学紀要 自然科学系 第71集 (2019)

CCD	$\alpha_{\scriptscriptstyle m B}$	$\beta_{\rm B}$ (mag)	B _k –V _k の範囲 (mag)
0	0.156 ± 0.020	-1.987 ± 0.018	$0.5 < B_k - V_k < 1.5$
1	0.298 ± 0.030	-2.230 ± 0.032	$0.7 < B_k - V_k < 1.5$
2	0.156 ± 0.016	-2.003 ± 0.016	$0.5 < B_k - V_k < 1.6$
3	0.208 ± 0.027	-1.899 ± 0.022	$0.5 < B_k - V_k < 1.4$
4	0.110 ± 0.020	-1.813 ± 0.017	$0.5 < B_k - V_k < 1.4$
5	0.140 ± 0.015	-1.975 ± 0.012	$0.2 < B_k - V_k < 1.3$
6	0.167 ± 0.017	-1.656 ± 0.014	$0.4 < B_k - V_k < 1.6$
7	0.156 ± 0.028	-2.061 ± 0.031	$0.5 < B_k - V_k < 2.0$

表3 Bバンドの変換係数

表4 Vバンドの変換係数

CCD	$lpha_{ m v}$	$\beta_{\rm v}$ (mag)	B _k -V _k の範囲 (mag)
0	0.010 ± 0.015	-2.107 ± 0.013	$0.5 < B_k - V_k < 1.5$
1	-0.015 ± 0.023	-1.929 ± 0.024	$0.7 < B_k - V_k < 1.5$
2	-0.003 ± 0.012	-2.069 ± 0.012	$0.5 < B_k - V_k < 1.6$
3	0.012 ± 0.020	-1.998 ± 0.016	$0.5 < B_k - V_k < 1.4$
4	-0.029 ± 0.015	-2.108 ± 0.013	$0.5 < B_k - V_k < 1.4$
5	0.014 ± 0.011	-2.155 ± 0.009	$0.3 < B_k - V_k < 1.6$
6	-0.030 ± 0.013	-1.991 ± 0.010	$0.4 < B_k - V_k < 1.6$
7	0.007 ± 0.023	-1.914 ± 0.025	$0.5 < B_k - V_k < 2.0$

表5 Rバンドの変換係数

CCD	$\alpha_{ m R}$	$\beta_{\rm R}$ (mag)	R _k -I _k の範囲 (mag)
0	0.111 ± 0.026	-2.149 ± 0.007	$0.0 < R_k - I_k < 0.6$
1	0.001 ± 0.005	-2.019 ± 0.002	$-0.2 < R_k - I_k < 0.5$
2	0.114 ± 0.009	-2.113 ± 0.003	$0.2 < R_k - I_k < 1.2$
3	0.098 ± 0.016	-2.014 ± 0.002	$-0.3 < R_k - I_k < 0.8$
4	0.119 ± 0.027	-2.198 ± 0.004	$-0.2 < R_k - I_k < 0.6$
5	0.076 ± 0.015	-2.242 ± 0.002	$-0.2 < R_k - I_k < 0.7$
6	0.103 ± 0.019	-2.186 ± 0.003	$-0.1 < R_k - I_k < 0.4$
7	0.069 ± 0.017	-2.178 ± 0.002	$-0.4 < R_k - I_k < 0.6$

表6 |バンドの変換係数

CCD	α_{I}	β_{I} (mag)	R _k -I _k の範囲 (mag)
0	0.074 ± 0.028	-2.633 ± 0.007	$0.0 < R_k - I_k < 0.6$
1	-0.024 ± 0.017	-2.708 ± 0.002	$-0.2 < R_k - I_k < 0.5$
2	0.129 ± 0.012	-2.619 ± 0.004	$0.0 < R_k - I_k < 1.2$
3	0.078 ± 0.019	-2.636 ± 0.003	$-0.3 < R_k - I_k < 0.8$
4	0.104 ± 0.037	-2.967 ± 0.006	$-0.2 < R_k - I_k < 0.6$
5	-0.006 ± 0.021	-2.959 ± 0.003	$-0.2 < R_k - I_k < 0.6$
6	0.078 ± 0.024	-2.908 ± 0.004	$-0.1 < R_k - I_k < 0.4$
7	0.036 ± 0.022	-2.883 ± 0.003	$-0.4 < R_k - I_k < 0.6$

(B-V)の, RIバンドについては色指数(R-I)に関する1次関数として変換式を定義してその係数を測定し,主な誤差等について考察した。

謝 辞

本研究の一部は、科学研究費補助金(Nos.16K12749, 16K12750, 17K00963, 17H02863, 19H05070)の援助 を受けて行いました。ここに感謝致します。

引用文献

- Hoddap, K. W., Kaiser, N., Aussel, H., Burgett, W., Chambers, K.
 C., Chun, M., Dombeck, T., Douglas, A., Hafner, D. et al.
 (2004), "Design of the Pan-STARRS Telescopes", Astronomische Nachrichten, vol. 325, pp. 636–642
- Kandori, R., Dobashi, K., Uehara, H., Sato, F., & Yanagisawa, K.
 (2003), "Grain Growth in the Dark Cloud L1251", Astronomical Journal, vol.126, pp. 1888–1895
- Landolt, A. U. (2009), "UBVRI Photometric Standard Stars around the Celestial Equator: Updates and Additions", Astronomical

Journal, vol.137, pp. 4186-4269

- Landolt, A. U. (1992), "UBVRI Photometric Standard Stars in the Magnitude Range 11.5-16.0 around the Celestial Equator", Astronomical Journal, vol.104, pp. 340-371 and 436-491
- Skrutskie, M. F., Cutri, R. M., Stiening, R. Weinberg, M. D., Schneider, S., Capenter, J.M., Beichman, C., Capps, R., Chester, T. et al. (2006), "Two Micron All Sky Survey (2MASS)", Astronomical Journal, vol.131, pp. 1163–1183
- Tonry, J. L., Stubbs, C. W., Lykke, K. R., Doherty, P., Shivvers, I. S., Burgett, W. S., Chambers, K. C., Hodapp, K. W., Kaiser, N. et al. (2012), "The Pan-STARRS1 Photometric System", Astrophysical Journal, vol. 750, id.99 (14pp)
- 市川 隆 (1997),「標準測光システム」,天文月報,70巻,第 1号,pp.23-28
- 安田直樹 (2007),「シリーズ現代の天文学第15巻 宇宙の観測 光・赤外天文学」,家 正則,岩室史英,舞原俊憲,水本好 彦,吉田道利編,日本評論社, p.271
- 吉田悠人(2019),「可視光多波長観測によるおうし座分子雲周 辺のダストの光学的性質に関する研究」,東京学芸大学修 士論文, pp. 1–25