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Abstract
Let R, be the set of positive real numbers. We show that there is a one to one correspondence between the set of 2 variable
functions f:R, xR — R, satisfying the exponential laws and the set of ring morphisms from R to the ring of Q-linear
transformations of R. As an application, we show that there is a non-constant 2 variable function f:R, xR — R, satisfying the
exponential laws such that f(x, y) is not equal to x” as functions.
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1. Introduction
It is well known that the exponential function x* : R, xR — R, satisfies the following exponential laws
(D (xx) =x’x’ ()X =202 (3) (0) = x®

where R, is the set of positive real numbers. Is the exponential function »’ : R, xR — R, a unique function satisfying the

exponential laws? That is to say, let f: R, xR — R, be a non-constant 2-variable function satisfying

(EXI) f(xlxb Y) :f(xls y)f(XQ, y)
(Ex2) f(x, y1 +y2) =f(x, y1) f(x, 2)
(Ex3) f(f(x,),2) =f(x,yz2)

Whether f'(x, y) = x¥ or not? In the case of 1-variable functions g: R — R, satisfying g(x + y) = g(x)g(y) for any x,y e R, it is
well known that there is such a function g(x) which is not equal to a* for any a €e R (see e.g. [3]). In this paper, we show that

2-variable functions satisfying the conditions (Ex1), (Ex2) and (Ex3) correspond to ring morphisms from R to the
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endomorphism ring Endg (R) of Q-linear transformations of R. As an application, we show that f(x, y) is not equal to x’ in

general.
2. Exponential Laws and Bilinear Functions
We start to consider bilinear functions induced by functions satisfying exponential laws.

Proposition 1. Let & be the set of 2-variable functions [ :R, xR — R, satisfying the conditions (Ex1), (Ex2) and (Ex3), and
let B be the set of 2-variable functions g : R xR — R satisfying the following conditions:

(B1) gy +x2, ¥) = gl(x1, p) + g(x2, »)
(B2) glx, y1 +y2) = glx, y1) + g(x, 1)
(B3) g(g(x, ), 2) = glx, yz)

For fe&, weset f(x,y)=1logf(e*,y) for any x,y € R, and for g € B, we set g(x,y) = e502%) for any x e R, and y € R. Then
the operations ~ and — induce a one to one correspondence between & and B. Especially, for f €&, f(x,y) =x if and only if

fxy) = xy.

Proof. For fe&, we have
Jxi+x,y) =log f(e"*, y)
=log f(e"e®,y)
=log(f(e", ) f(e".y))
=log f(e",y)+log f(e*,y)
= )+ fn,y)

Fuyi+y2) =1og f(x,y1+y2)
=log(f(e",y)f(e",y2)
=log f(e*,y1)+log f(e*,y2)
= fouy)+F(xy2)

F(f(xy).2) = flog f(e*,y),2)
= 10g f(elogf(e*,y), 2)
=log f(f(e",y).2)
=log f(e",y2)
= f(x,y2)

Therefore, f satisfies the conditions (B1), (B2), and (B3), and it belongs to 8. Similarly, for g€ B, g belongs to &.

Furthermore, we have

Flx,y) = eftosx g(x,y) = logzg(e",y)
= log /ey = log 0oz
= f(x,y) =g(x,y)

Hence the operations ~ and — induce a one to one pondance between & and B. In the case f(x, y) = x”, we have
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fxy) =log f(e*,y)
= log(e'y
=loge™

=Xy O

Corollary 2. Let f:RyXR — R, be a non-constant 2-variable function satisfying the conditions (Ex1), (Ex2) and (Ex3).

If f(x, ) is continuous, then f(x,y)=x" as functions.

Proof. Since log x and e~ is continuous, by Proposition 1 it suffices to show that if g: RXR — R satisfying the conditions (B1),
(B2) and (B3) is continuous and is not constant, then g(x, y) = xy. Let g(1, 1) = a, then the conditions (B1) and (B2) say that
g(m, n) = amn for any integers m, n. Then it is easy to see that g(p, q) = apq for any p,q € Q. Since g is continuous, g(x, y) =

axy for any x,y € R. By the condition (B3), we have

g(g(1,1),1) = g(1,1)

a2:a

a=0,1
In the case a = 0, g is constant. Henece we have a =1, g(x, y) = xy. i
3. Exponential Laws and Ring Morphisms

We denote by Fun(R, R) the set of functions from R to R. A mapping # : R — Fun(R, R) means that for any y € R,
h(y) : R — R is a function with A(y)(x) € R for any x € R.

Proposition 3. Let T be the set of mappings h : R — Fun(R, R) satisfving the following conditions:

(LT) A1 +22) = A()0x1) + A()(x2)
(L2) h(y1+y2)(x) = h(y1)(x) + A(y2)(x)
(L3) (h(y) o h(2))(x) = h(yz)(x)

For g € B, we set §(y)(x) =g(x,y) for any x,y € R, and for h€ T, we set h(x,y) = h(y)(x) for any x,y € R. Then the operations N
and V induce a one to one correspondence between B and T . Especially, for g € B, g(x,y) = xy if and only if g(y)(x) = xy.

Proof. For g € B, it is easy to see that g satisfies the conditions (L1) and (L2). According to the condition (B3), for any x,y € R,

we have

(8(y) 0 2(2) (x) = 2((&(2)(x)
=8((gx,2)
=8(8(x,2),y)
= g(x,yz)
=802 (x)

Therefore g satisfies the condition (L3). Similarly, for 4 € 7", & belongs to 8. Furthermore, we have

By =20 h()(x) =h(xy)
=g(x,y) =h(y)(x)
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Hence the operations A and V induce a one to one correspondence between 8 and 7 . In the case g(x, y) = xy, it is clear that

&) = xy. o

Definition 4. A4 non-empty set R is called a ring provided that there are “zero element” 0 and an addition operation

+:RXR—R ((a,b) = a+Db) and a multiplication operation - : RXR — R ((a,b) — ab) such that

(1) a+(b+c)=(a+b)+cforany a,b,c €R,

(2) a+0=0+a=aforanya€R,

(3) for any a € R thereis b € R such that a+b =0,
(4) a+b=b+aforanya,b,c€R,

(5) a(bc) = (ab)c for any a,b,c € R,

(6) a(b+c)=ab+ac, (b+c)a=ba+caforany a,b,c€R.

For two rings R and R', a mapping ¢ : R — R' is called a ring morphism if ¢ satisfies
(1) p(a+Db) = p(a) +¢(b) for any a,b € R,

(2) ¢(ab) = p(a)p(b) for any a,b € R.

Remark 5. Usually, R is assumed to have identity 1, that is a-1=1-a=a for any a € R, and a ring morphism ¢ : R — R' is
assumed to satisfy ¢(1)=1 (see e.g. [1]). But, in this paper we don't assume that identity exists and that a ring mophism

preserves identity.

Example 6. Let V be a Q-vector space, Endq (V) the set of Q-linear transformations of V. For a, € Endqg (V), we define an

addition operation a+f3 and a multiplication operation of3 by

(@+B)W) = a(v)+B(v)
(aB)(v) = a(B(v))

forany veV . Then a+pB and af are also Q-linear transformations, and hence Endq (V) is a ring.

The following lemma is well known as the fact that the set of 1-variable functions f:R — R satisfying f(x + y) =f(x) + f(»)
for any x,y € R coincides with the endomorphism ring Endg (R).

Lemma 7. If a function @ : R — R satisfies

a(x+y) = a(x)+a(y)

for any x,y €R, then « is a Q-linear transformation.

proof. For any integer n and x € R, we have a(nx) = na(x). Then it is easy to see that a(gx) = ga(x) for any ¢ € Q and x € R.

Lemma 8. The set T in Proposition 3 coincides with the set of ring morphisms from R to Endg (R).

proof. Let h : R — Fun(R, R) be a mapping satisfying the conditions (L1), (L2) and (L3). By Lemma 7, A(y) is a Q-linear
transformation of R for any yeR. This means 4 : R — Endg (R). According to the conditions (L2) and (L3), % is a ring
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morphism from R to Endg (R).

Theorem 9. For f €&, by taking f(y)(x) =log f(e',y), f is a ring morphism from R to Endg (R). For a ring morphism h : R
— Endg (R), by taking h(x,y) = "0e9 | belongs to &. The operations " and y induce a one to one correspondence between

& and the set T of ring morphisms from R to Endg (R). Especially, for f € E, f(x, y) =x" if and only iff(y)(x) =yx.
proof. By Propositions 1, 3, and Lemma 8, it is trivial. o

Corollary 10. There exists a non-constant 2-variable function f : R, xR — R, satisfying the conditions (Ex1), (Ex2) and (Ex2)

such that f(x, y) is not equal to x¥ as functions.

proof. According to the axiom of choice, there exists a Q-vector basis {vi}ica of R such that the cardinality of A is an infinite
cardinal (see e.g. [3], [4]). By basic results of set theory, there exist subsets I' and {v} of A such that the cardinality of T is equal

to one of A and that A is a disjoint union of I" and {v} (see e.g. [2]). Therefore, we have Q-linear maps

(@.0) ROQ-R . (p]:R>ReQ
(1 @x2 = ai(x) +a2(x2)) (x> B1(x)B2(x))

such that

ajofi+ayofy =1
(%) Proar=1g, Proaz=0
Proa1 =0, proar=lg

We define a mapping # : R — Endg (R) by
h(y)(x) = a1(B1(x))

where R®Q is a direct sum of R and Q. It is clear that 4(y) is a Q-linear transformation for any y € R. By (x), 4 is a ring
morphism. If f: R, xR — R, is constant, then f(x, y) = 1 as functions and f(y) =0 as Q-linear transformations. According to
Theorem 9, we have a non-constant 2-variable function he R, XR — R, satisfying the conditions (Ex1), (Ex2) and (Ex3) such

that ;z(x, y) is not equal to x* as functions.
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