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Abstract

	 Let R+  be the set of positive real numbers. We show that there is a one to one correspondence between the set of 2 variable 

functions f : R+ ×R→ R+ satisfying the exponential laws and the set of ring morphisms from R  to  the ring of Q-linear 

transformations of R . As an application, we show that there is a non-constant 2 variable function f : R+ ×R→ R+  satisfying the 

exponential laws such that f (x, y) is not equal to xy as functions.
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1.  Introduction

	 It is well known that the exponential function xy : R+ ×R→ R+  satisfies the following exponential laws

(1) (x1x2)y = x1
y x2

y (2) xy1+y2 = xy1xy2 (3) (xy)z = xyz

where R+  is the set of positive real numbers. Is the exponential function xy : R+ ×R→ R+  a unique function satisfying the 

exponential laws?  That is to say, let f : R+ ×R→ R+  be a non-constant 2-variable function satisfying

	 (Ex1)  f (x1x2, y) = f (x1, y) f (x2, y)

	 (Ex2)  f (x, y1 + y2) = f (x, y1) f (x, y2)

	 (Ex3)  f ( f (x, y), z) = f (x, yz)

Whether f (x, y) = xy or not?  In the case of 1-variable functions g : R→ R+  satisfying g (x + y) = g (x) g (y) for any x,y ∈ R , it is 

well known that there is such a function g(x) which is not equal to ax for any a ∈ R  (see e.g. [3]). In this paper, we show that 

2-variable functions satisfying the conditions (Ex1), (Ex2) and (Ex3) correspond to ring morphisms from R  to the 
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endomorphism ring EndQ  (R) of Q-linear transformations of R. As an application, we show that f (x, y) is not equal to xy in 

general.  

2.  Exponential Laws and Bilinear Functions

	 We start to consider bilinear functions induced by functions satisfying exponential laws.

Proposition 1.  Let E  be the set of 2-variable functions f : R+ ×R→ R+ satisfying the conditions (Ex1), (Ex2) and (Ex3), and 

let B be the set of 2-variable functions g : R×R→ R satisfying the following conditions:

	 (B1)  g(x1 + x2, y) = g(x1, y) + g(x2, y)

	 (B2)  g(x, y1 + y2) = g(x, y1) + g(x, y2)

	 (B3)  g(g(x, y), z) = g(x, yz)

For f ∈ E , we set f̃ (x,y) = log f (ex,y)  for any x,y ∈ R, and for g ∈ B, we set ḡ(x,y) = eg(log x,y) for any x ∈ R+ and y ∈ R . Then 

the operations ∼ and − induce a one to one correspondence between E  and B.  Especially, for f ∈ E, f (x, y) = xy if and only if 

f̃ (x,y) = xy.

Proof.  For f ∈ E, we have

f̃ (x1+x2,y)= log f (ex1+x2 ,y)

= log f (ex1 ex2 ,y)

= log f (ex1 ,y) f (ex2 ,y)

= log f (ex1 ,y)+log f (ex2 ,y)

= f̃ (x1,y)+ f̃ (x2,y)

� �

f̃ (x,y1+y2)= log f (x,y1+y2)

= log f (ex,y1) f (ex,y2)

= log f (ex,y1)+log f (ex,y2)

= f̃ (x,y1)+ f̃ (x,y2)

� �

f̃ ( f̃ (x,y),z) = f̃ (log f (ex,y),z)

= log f (elog f (ex ,y),z))

= log f ( f (ex,y),z)

= log f (ex,yz)

= f̃ (x,yz)

Therefore, f̃  satisfies the conditions (B1), (B2), and (B3), and it belongs to B . Similarly, for g ∈ B , ḡ  belongs to E .  

Furthermore, we have

¯̃f (x,y) = e f̃ (log x,y) ˜̄g(x,y) = log ḡ(ex,y)

= elog f (elog x ,y) = logeg(logex ,y)

= f (x,y) = g(x,y)

Hence the operations ∼ and − induce a one to one pondance between E  and B.  In the case f (x, y) = xy, we have
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f̃ (x,y) = log f (ex,y)

= log(ex)y

= logexy

= xy� □

Corollary 2.  Let f : R+ ×R→ R+ be a non-constant 2-variable function satisfying the conditions (Ex1), (Ex2) and (Ex3).  

If  f (x, y) is continuous, then  f (x, y) = xy as functions.

Proof.  Since log x and ex is continuous, by Proposition 1 it suffices to show that if g : R×R→ R  satisfying the conditions (B1), 

(B2) and (B3) is continuous and is not constant, then g (x, y) = xy. Let g (1, 1) = a, then the conditions (B1) and (B2) say that 

g (m, n) = amn for any  integers m, n. Then it is easy to see that g (p, q) = apq for any p,q ∈ Q . Since g is continuous, g (x, y) = 

axy for any x,y ∈ R. By the condition (B3), we have

g(g(1,1),1) = g(1,1)

a2 = a

a = 0,1

In the case a = 0, g is constant.  Henece we have a = 1, g (x, y) = xy.� □

3.  Exponential Laws and Ring Morphisms

	 We denote by Fun(R, R) the set of functions from R to R. A mapping h : R →  Fun(R, R) means that for any y ∈ R , 

h(y) : R→ R is a function with h(y)(x) ∈ R for any x ∈ R.

Proposition 3.  Let T  be the set of mappings h : R →  Fun(R, R) satisfying the following conditions:

	 (L1)  h(y)(x1 + x2) = h(y)(x1) + h(y)(x2)

	 (L2)  h(y1 + y2)(x) = h(y1)(x) + h(y2)(x)

	 (L3)  (h(y) ◦ h(z))(x) = h(yz)(x)

For g ∈ B, we set ĝ(y)(x) = g(x,y)  for any x,y ∈ R, and for h ∈ T , we set ȟ(x,y) = h(y)(x) for any x,y ∈ R. Then the operations ˄ 

and ˅ induce a one to one correspondence between B and T .  Especially, for g ∈ B, g(x,y) = xy  if and only if ĝ(y)(x) = xy .

Proof.  For g ∈ B, it is easy to see that ĝ satisfies the conditions (L1) and (L2). According to the condition (B3), for any x,y ∈ R, 

we have

(ĝ(y)◦ ĝ(z)) (x) = ĝ(y)(ĝ(z)(x))

= ĝ(y)(g(x,z))

= g(g(x,z),y)

= g(x,yz)

= ĝ(yz)(x)

Therefore ĝ satisfies the condition (L3). Similarly, for h ∈ T , ȟ belongs to B. Furthermore, we have

ˇ̂g(x,y) = ĝ(y)(x) ˆ̌h(y)(x) = ȟ(x,y)

= g(x,y) = h(y)(x)
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Hence the operations ˄ and ˅ induce a one to one correspondence between B and T .  In the case g (x, y) = xy, it is clear that 

ĝ(y)(x) = xy.� □

Definition 4.  A non-empty set R is called a ring provided that there are ‟zero element” 0 and an addition operation 

+ : R×R→ R ((a,b) → a+b) and a multiplication operation · : R × R → R ((a,b) → ab) such that

	
(1) a+ (b+ c) = (a+b)+ c for any a,b,c ∈ R,

(2) a+0 = 0+a = a for any a ∈ R,

(3) for any a ∈ R there is b ∈ R such that a+b = 0,

(4) a+b = b+a for any a,b,c ∈ R,

(5) a(bc) = (ab)c for any a,b,c ∈ R,

(6) a(b+ c) = ab+ac, (b+ c)a = ba+ ca for any a,b,c ∈ R.

For two rings R and R′, a mapping ϕ : R→ R'  is called a ring morphism if ϕ satisfies
	

(1) ϕ(a+b) = ϕ(a)+ϕ(b) for any a,b ∈ R,

(2) ϕ(ab) = ϕ(a)ϕ(b) for any a,b ∈ R.

Remark 5.  Usually, R is assumed to have identity 1, that is a · 1 = 1 · a = a for any a ∈ R, and a ring morphism ϕ : R→ R' is 

assumed to satisfy ϕ(1) = 1 (see e.g. [1]). But, in this paper we don’t assume that identity exists and that a ring mophism 

preserves identity.

Example 6.  Let V be a Q-vector space, EndQ  (V) the set of Q-linear transformations of V. For α,β ∈ EndQ  (V), we define an 

addition operation α+β  and a multiplication operation αβ  by

(α+β)(v) = α(v)+β(v)

(αβ)(v) = α(β(v))

for any v ∈ V .  Then α+β  and αβ  are also Q-linear transformations, and hence EndQ  (V) is a ring.

	 The following lemma is well known as the fact that the set of 1-variable functions f : R→ R  satisfying f (x + y) = f (x) + f (y) 

for any x,y ∈ R coincides with the endomorphism ring EndQ  (R).

Lemma 7.  If a function α : R→ R  satisfies 

α(x+ y) = α(x)+α(y)

for any x,y ∈ R, then α is a Q-linear transformation.

proof.  For any integer n and x ∈ R, we have α(nx) = nα(x). Then it is easy to see that α(qx) = qα(x) for any q ∈ Q and x ∈ R.

� □

Lemma 8.  The set T  in Proposition 3 coincides with the set of ring morphisms from R to EndQ  (R).

proof.  Let h : R → Fun(R, R) be a mapping satisfying the conditions (L1), (L2) and (L3). By Lemma 7, h(y) is a Q-linear 

transformation of R for any y ∈ R .  This means h : R → EndQ  (R). According to the conditions (L2) and (L3), h is a ring 
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morphism from R to EndQ  (R).

� □

Theorem 9.  For f ∈ E, by taking ˆ̃f (y)(x) = log f (ex,y), ˆ̃f  is a ring morphism from R to EndQ  (R). For a ring morphism h : R 

→ EndQ  (R), by taking ¯̌h(x,y) = eh(y)(log x), ¯̌h belongs to E. The operations ∧∼ and −∨ induce a one to one correspondence between 

E and the set T  of ring morphisms from R to EndQ  (R). Especially, for f ∈ E, f (x, y) = xy if and only if ˆ̃f (y)(x) = yx.

proof.  By Propositions 1, 3, and Lemma 8, it is trivial.� □

Corollary 10.  There exists a non-constant 2-variable function f : R+ ×R→ R+ satisfying the conditions (Ex1), (Ex2) and (Ex2) 

such that f (x, y) is not equal to xy as functions.

proof.  According to the axiom of choice, there exists a Q-vector basis {vi}i∈Λ of R such that the cardinality of Λ is an infinite 

cardinal (see e.g. [3], [4]). By basic results of set theory, there exist subsets Γ and {v} of Λ such that the cardinality of Γ is equal 

to one of Λ and that Λ is a disjoint union of Γ and {v} (see e.g. [2]). Therefore, we have Q-linear maps 

(α1,α2) : R⊕Q→ R ,
�
β1
β2

�
: R→ R⊕Q

(x1 ⊕ x2 �→ α1(x1)+α2(x2)) (x �→ β1(x)⊕β2(x))

such that 

(∗)



α1 ◦β1+α2 ◦β2 = 1R
β1 ◦α1 = 1R , β1 ◦α2 = 0

β2 ◦α1 = 0 , β2 ◦α2 = 1Q

We define a mapping h : R → EndQ  (R) by

h(y)(x) = α1(yβ1(x))

where R⊕Q is a direct sum of R and Q. It is clear that h(y) is a Q-linear transformation for any y ∈ R. By (*), h is a ring 

morphism. If f : R+ ×R→ R+ is constant, then f (x, y) = 1 as functions and ˆ̃f (y) = 0 as Q-linear transformations. According to 

Theorem 9, we have  a non-constant 2-variable function ¯̌h : R+ ×R→ R+ satisfying the conditions (Ex1), (Ex2) and (Ex3) such 

that ¯̌h(x,y) is not equal to xy as functions.

� □
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指数法則と環準同型写像

宮　地　淳　一＊

数学分野

要　　旨

　我々は，正の実数と実数の積集合から正の実数への指数法則を満たす 2関数 f : R+ ×R→ R+全体の集合と実数Rか
ら実数RのQ上線形変換全体への環準同型写像全体の集合の間に一対一の対応があることを示した。その応用とし
て，関数xyと異なる指数法則を満たす 2関数 f (x, y)が存在することを示した。

キーワード: 指数法則，環準同型写像
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