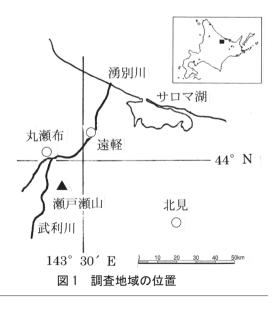
北見山地南部,遠軽地域における風穴と低温現象

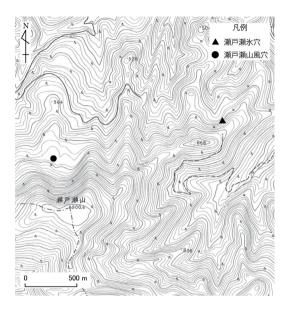
山川 信之*・清水 長正**

キーワード:風穴,低温現象,永久凍土,エゾイソツツジ群落,コケモモ群落

I はじめに


北海道北東部,北見山地南部の遠軽地域の山 地斜面には,夏季に0℃近くの地温を測ると 異常低温地が複数箇所分布することが報告さ れ,そのうちのいくつかについては,風穴に起 因することが示唆されている(志保井,1973, 1974,1975a,1975b).筆者らはこれまで東大 雪地域で夏期凍結層や凍土について調査し,そ れらは地中が低温で空隙から冷風を吐出する風 穴現象に起因することを確認してきた(清水 ほか,1988;清水・山川,2001;清水・山川, 2004 など).また,澤田・石川(2003)は同じ 北海道然別湖近傍の西ヌプカウシヌプリにおい て,岩塊斜面に生じた風穴現象によって永久凍 土が生成されることを明らかにしている.

志保井が報告した北見地方・常紋地域・湧別 川流域の異常低温地については,瀬戸瀬氷穴の ように永久凍土の可能性がありながら,その後 の調査が行われていない箇所もあり,また,地 形的,環境的な解釈についても問題を残してい る.筆者らは,遠軽町域南西部の瀬戸瀬氷穴, 瀬戸瀬山北面(仮称「瀬戸瀬山風穴」),武利(む り)風穴の3ヶ所で地形および植生,地温,気 温観測などの調査を行い,いくつかの知見を得 たので報告する.


Ⅱ 瀬戸瀬氷穴

JR 石北線瀬戸瀬駅から南に8 kmほど離れた 瀬戸瀬川上流の谷底に瀬戸瀬温泉がある.瀬戸 瀬温泉から川を挟んだ西側の山腹には,かつて 瀬戸瀬スキー場が開かれていたが,現在は閉鎖 され,跡地には森林が再生している.瀬戸瀬 氷穴は,このスキー場跡地の中腹に残る第一 ヒュッテから西方に200 mほど離れた標高約 550 mの斜面中腹に位置している(図1,図2).

瀬戸瀬氷穴は 1930 ~ 1940 年ころに採掘が行 われていた金鉱山の坑道跡で,『遠軽町史』(遠

^{*} 芝浦工業大学中学高等学校(学部 28 期・院 14 期) ** 駒澤大学文学部(昭和 57 年度研究生)

図 2 瀬戸瀬氷穴と瀬戸瀬山風穴の位置 1:25000 地形図「瀬戸瀬温泉」を使用.

軽町,1977:p.855)には「坑道の入り口から 30 m位の地点で,左側岩盤の割れ目から異常 な冷風が噴き上げ,真夏でも地下水が凍るほど の採掘現場で,毎日,この氷の層を砕いては鉱 石の採掘が進められていた」とあり,志保井 (1975a)にはこのことを証明する高さ50 cmほ どの氷筍と厚さ30~50 cmの氷盤の写真が示 されている.

2007年の現地での聞き取りと、2008年10月 に網走西部森林管理署・森林官による現地への 案内で位置が判明した.現地はトドマツなどの 森林におおわれた傾斜30°前後の北西向き斜 面中腹で,水平方向に作業道が横断し,作業道 の下方にはガリー状の掘れ込みが傾斜方向に延 びている.掘れ込みの下端部にはズリ山のよう な土砂の堆積が認められた.坑口は不明で,お そらく作業道の開削工事により落盤したものと 判断された.志保井(1975b)によると,当時あっ た坑口から西へ6mのところに旧坑が崩落した 「くぼみ」があり,坑口が切り替えられたらしい. 筆者らが現地で確認した掘れ込みが旧坑の坑口 に当たるのか、切り替えられた坑口なのかは不 明である.

ところで、地下の構造を知る方法の一つに比 抵抗映像法電気探査がある.これは地表に設定 した測線に沿う地下の比抵抗(電気の流れにく さ)値の二次元分布断面を求める方法であり、 その断面映像から地下の状況を推定することが できる.坑口付近とされる地点を中心に水平方 向とそれに直交する傾斜方向の2測線を設定し た.測線の長さは、それぞれ38 m、電極20本、 電極間隔2 m とし、測定方法はウェンナー法に よった.使用機器はアイリス社製 SYSCAL KID で、逆解析は RES2D INV により求めた.

測定結果を比抵抗映像断面として表した(図 3).水平方向・縦断方向ともに全体として 2500 Ωm以下の低い値を示しているが,1000 Ωm前後に旧坑道が表れているようである(図 3).

さらに 2008 年 11 月に温度ロガー(T & D 社 製,おんどとり Jr.51A)を旧坑口付近の 30 cm 深に埋設し,付近の立木にも温度ロガーを設置 して,地温変化と気温変化について観測を行っ た(図 4).

この観測結果では、2009年8月上旬から11 月上旬にかけての約3箇月間は地温が0℃を わずかに上回っている.これについては、観測 層位が30 cm深の表層部であり、その期間に 表層部が融解したとみられる.その他の期間 では地温が0℃以下で推移している.志保井 (1975b)は、調査当時坑口から2.5 m奥・地表 から深さ3 mまでは活動層で、それより深部に は氷筍と氷盤が存在し、当時まで40年以上0 ℃以下の低温が存続したことから永久凍土と認 めている.また開坑当時から低温で氷があった ことから、開坑以前から永久凍土の状態にあっ たことを推定している.いずれにしろ外気の影

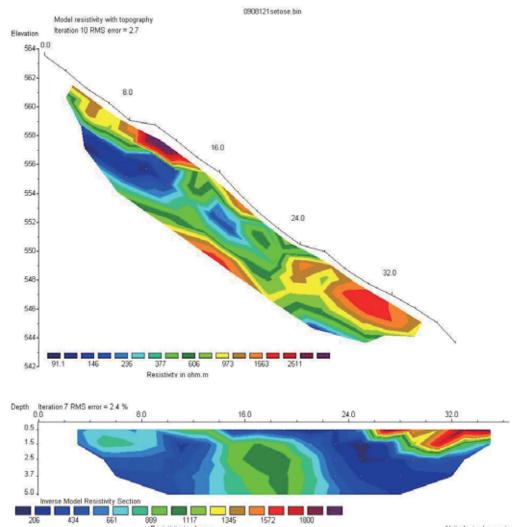


図 3 瀬戸瀬氷穴の比抵抗映像

889 1117 Resistivity in ohm.m

434

瀬戸瀬氷穴で発掘された氷塊 写真 1

Unit electrode spacin

瀬戸瀬山風穴と周辺のエゾイソツツジ群落 写真2

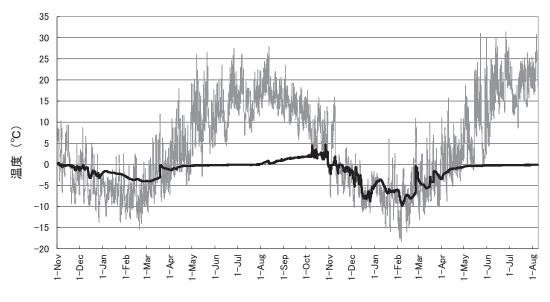


図4 瀬戸瀬氷穴の気温と地温の変化

響を受けない坑道内部では、ほぼ氷塊が充填 し、局所的な永久凍土が生成されている可能性 が高い. なお、2010年8月中旬の回収の際には、 ロガーが堅固な氷塊に包含された状態であっ た.

温度ロガーから得られた 2009 年 8 月 8 日か ら 2010 年 8 月 7 日までの気温観測データから 算出した当地の年平均気温は 5.1 \mathbb{C} ,融解指 数は 2688.9 \mathbb{C} ・days,凍結指数は 844.9 \mathbb{C} ・ days で,融解指数と凍結指数との差は 1844 \mathbb{C} ・ days であった.また,遠軽における同じ期間 の気象庁のアメダスデータによると,遠軽では 最高気温が 30 \mathbb{C} を超える日が 2010 年 6 月から 温度ロガーを回収する 8 月 8 日までの間に 9 日 も観測されており,特に 6 月 26 日の最高気温 は 35.3 \mathbb{C} にも達していた.

1981 年から 2010 年までの 30 年間の気象庁 の観測データによれば、遠軽での 6 月の平均 気温は 14.3 ℃,最高気温の平均は 20.3 ℃, 7 月は平均気温が 18.2 ℃,最高気温の平均は 23.7 ℃,8月は平均気温が 19.9 ℃,最高気温 の平均は25.5 °Cであった. 2010年に関しては, 6月の平均気温は17.5 °C,最高気温の平均は 24.5 °C,7月の平均気温は18.7 °C,最高気温 の平均は24.2 °C,8月の平均気温は22.5 °C, 最高気温の平均は28.3 °Cであった.7月がほ ぼ30年間の平均値と同じであったのに対し,6 月と8月は平均気温,最高気温の平均とも30 年間の平均値と比べて3~4 °Cも高いという 結果が得られた.このことからも2010年の夏 が異常に暑かったことがわかる.それにもかか わらず坑口付近に埋設した温度ロガーが堅固な 氷塊に包含されていたということは,より深部 ではより低温状態にあることが推察される.

凍結指数と融解指数の関係について,曽根 (2004)は置戸町鹿ノ子ダムの風穴地での観測 結果から年平均気温4 ℃以下,融解指数から 凍結指数を引いた値が1300~1400 ℃・day以 下の場合に,風穴現象による永久凍土が存在す る可能性があることを指摘している.今回の 瀬戸瀬氷穴の観測で得られたその差1844 ℃・ daysは,この値を大きく上回る.温度条件か

観測期間は 2008 年 11 月~2010 年 8 月.太線は地温,細線は気温を示す.

北見山地南部・遠軽地域における風穴と低温現象(山川信之・清水長正)

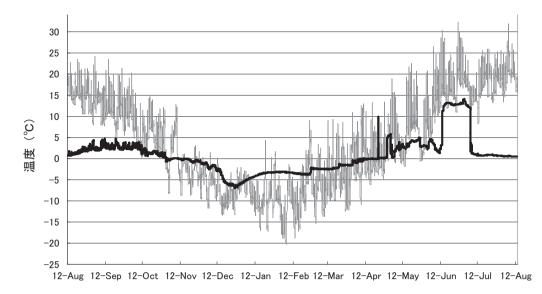


図5 瀬戸瀬山風穴の気温と地温の変化

らみれば、瀬戸瀬氷穴は永久凍土が生成される 領域外で特異な低温環境をもつ場所といえよう.

ところで、瀬戸瀬氷穴での風穴現象のメカニ ズムについては、『遠軽町史』の「基盤岩の割 れ目から異常な冷風が噴き上げ…」から推察す ると、概ね以下のようであると考えられる.基 盤の流紋岩に生じた開口節理があり、こうした 開口節理が山体には複数存在している可能性が ある.これらの開口節理は、坑道の開削により 外部と坑道の空間とを結びつけて坑道内部に著 しい空気の移流を生じさせ風穴現象が生じてい るようである.冬季の気候環境が厳しく、坑道 というより冷気の貯留されやすい空間があるた め、永久凍土を形成するような風穴現象による 強力な冷却効果を生じさせていると考えられ る.

Ⅲ 瀬戸瀬山風穴

瀬戸瀬山風穴は, 瀬戸瀬温泉西方にある瀬戸

瀬山(901.8 m)の北側,標高630 m付近の山 腹緩斜面に位置している(図2).この緩斜面 には長径1 mほどの流紋岩の岩塊で構成され た小丘や畝状地形がみられる.志保井(1973)は, この小丘や畝状地形をモレーンとして考え,瀬 戸瀬山に氷河地形を想定しているが,標高が低 いことと形状や表層が泥土におおわれていると ころもあるなどから,これらの地形は地すべり 地形と判断される.

風穴はこの畝状地形が発達する範囲内の畝 と畝との間の凹地で顕著に見られた(写真 2). 凹地は深さ $1 \sim 2$ m, 幅 $3 \sim 5$ m, 長さ数 10 m ほどで細長く, N18° E 方向に延びる. これは 地すべりによるクラック地形である可能性が高 い.

凹地底には,長径1mほどの岩塊がマトリッ クスを欠いた状態で堆積している.また,岩塊 の表面は全体としてミズゴケを含む厚いコケの マットに覆われている.凹地から東側の60 m × 30 mほどの範囲には,通常,高山帯でハイ マツとともにみられるエゾイソツツジ(カラフ

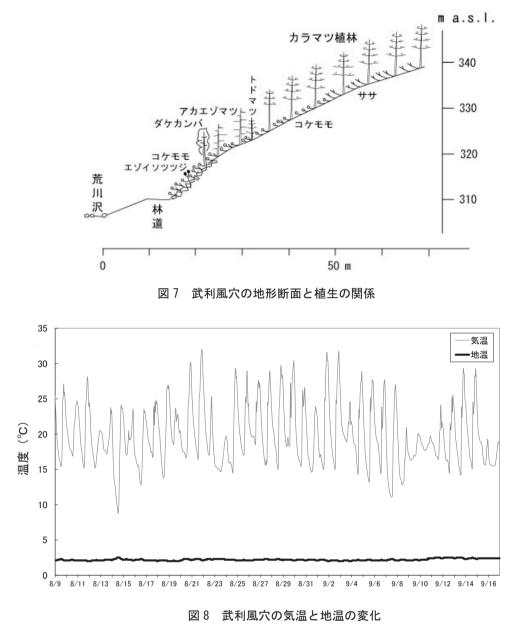
観測期間は2009年8月~2010年8月.太線は地温、細線は気温を示す.

トイソツツジ)を主とした低木群落が形成され ている.一方,凹地と畝状地形の周辺はトドマ ツを主とした森林で,林床にはササが優占して いる.

凹地底のミズゴケの下の岩塊の隙間の地温 は、2009年8月12日で0.3℃を記録した.ま た、同時に岩塊の隙間から冷気の噴出しが確認 された.これらのことから、この凹地一帯は周 辺の林地に比べて気温が低く、多湿な環境にあ ることが伺えた.

図5は2009年8月から2010年8月までの 1年間の気温と30 cm深の地温の観測結果であ る.温度ロガーにはT&D社製「おんどとり Jr.51A」を使用した.

この観測結果から瀬戸瀬山風穴では、地温変 化において他の風穴地と異なる結果が得られ た. それは、2010 年 4 月下旬に一時的に 10℃ に上昇した後の6月から7月にかけての地温に 現れている.6月12日頃を境に一気に10℃ほ ど急上昇し、3週間ほど一定の温度を保った後、 今度は7月10日前後に一気に10℃ほど低下し ているという異常な変化である.気温の変化と 比べ合わせてみるとこの現象については、次の ようなことが推定される.4月上旬に一時的に 吸い込みが起こった後、最高気温が30℃を超 えた6月12日頃に外気の侵入すなわち著しい 吸い込みが起こった.これによって地温も急上 昇した. 暖気の吸い込みはしばらく続き,7月 10日前後に今度は冷気の吐出に転じ、地温が 0℃近くまで低下したのだろう.


崖錐や地すべり地形の斜面に見られる風穴現 象は,通常,斜面上部で夏季に暖気を吸い込み 冬季に暖気を吐出する温風穴が,斜面の下部で は夏季に冷気を吐出し,冬季に冷気を吸い込む 冷風穴が見られるのが一般的である.しかし, 瀬戸瀬山風穴のような山腹緩斜面に形成された 風穴では,空気の移流が,同じ穴で初夏の一時 期吸い込みに転じた可能性があることを示唆し ている.この理由は不明であるが,瀬戸瀬山風 穴が山腹緩斜面にあることから,上方にも下方 にも空隙が連続し,この期間のみ下方へ空気が 移流して吸い込みが顕著に起こったためと推定 される.

気温観測から得られた当地の年平均気温は 4.0 ℃,融解指数は2430 ℃・days,凍結指数 は987.8 ℃・days,融解指数と凍結指数の差 は1442.2 ℃・daysであった.この数値は曽根 (2004)が指摘する風穴による永久凍土が存在 する可能性がある数値の上限の1400 ℃・day に近い.前述したように2010年の夏は異常に 暑かったことを考慮すると、当地にも永久凍土 が存在する可能性があるものと考えられる.

ところで,瀬戸瀬山風穴周辺のエゾイソツツ ジ群落の広がる緩斜面一帯ではエゾナキウサギ の生息が確認された.調査に同行された川辺百 樹氏(当時ひがし大雪博物館)によれば,ここ のエゾナキウサギの生息密度は高く,北見山地 における主要な生息地のひとつであろうとの見

図 6 武利風穴の位置 1:25000 地形図「丸瀬布南部」を使用.

観測期間は2012年8月~9月.

解であった.また,置戸町にある春日風穴(瀬 戸瀬山から南へ約38km)ではエゾナキウサギ の風穴地での生息状況が明らかにされ,北海道 から2005年12月に「学術自然保護地区」に指 定を受けた(車田,2005).また,1928年にエ ゾナキウサギが北海道内で初めて捕獲された置 戸町オンネアンズ川流域(瀬戸瀬山の南南東約 31 km)を2011年に川辺氏と踏査したところ, 川辺氏がエゾナキウサギの食痕を確認した.こ れらはエゾナキウサギの分布の東縁地域を構成 する場所で(川辺,2008),そのなかでも主要 な場所のひとつである瀬戸瀬山風穴のエゾナキ ウサギ生息地を保護することは今後の重要な課 題であろう.

Ⅳ 武利風穴

丸瀬布市街から湧別川の支流武利川に沿って 5 kmほど上流に遡ると,左岸側から合流する荒 川沢がある.武利風穴は荒川沢の林道を1 km ほど沢沿いに遡った標高 320 mの林道の法面に 位置し,白滝ジオパークのジオサイトに指定さ れている(図 6).

現地調査と空中写真判読から,風穴は背後 (北側)の山腹から発生した地すべり移動体の 末端に位置していることが確認された.林道が この地すべり移動体の末端を切って開削されて いるため,ちょうど法面全体が風穴となってい る.とくに冷風が吐出する空洞には,「武利風洞」 と書かれた石柱が建てられており,長径70~ 80 cmほどの溶結凝灰岩の岩塊が積み重なって, 縦70 cm,横25 cmほどの空洞を形成してい る.この空洞の坑口から70~80 cmほど奥で, 2012 年 8 月 9 日に氷塊が認められた.

武利風洞より 150 mほど下流(東側)の標高 310 m付近には,法面に高山植物のコケモモが 密生した場所がある.斜面を構成する岩屑は概 ね長径 20 cm程度で,部分的にマトリックスを 有する.コケモモ群落は林道より 20 mほど上 部のカラマツ植林の林床まで広がっていた(図 7).この場所ではエゾイソツツジは散見される 程度にしか生育していないが,コケモモ群落は 特異な植物景観を呈している.コケモモ群落は 特異な植物景観を呈している.コケモモが密生 する法面で地温を計測したところ,およそ 20 cm深で1.2 C(2012年8月9日)という低温 を示した.この場所に2012年8月9日より温 度ロガー(T&D社製,おんどとりJr.51A) を設置し,現在,気温と地温の変化を測定中で あるが,2012年8月中旬~9月中旬の1箇月 間の気温・地温の変化を図8に示す.この間の 地温は2 ℃前後の横ばいで、日最高気温より 18~30 ℃も低く、また日最低気温との差でも 6~15 ℃ほど低い.

鈴木ほか(1987)によれば、森林下の永久凍 土地では、コケモモやエゾイソツツジなどが林 床を構成することが調べられている.これに類 似する林床植生と考えられる.

▼ おわりに

北見・遠軽地域には風穴に起因する低温環境 によって特異な自然現象が見られる.これらは, 凍結指数・融解指数の関係など気温条件に直接 支配されたものではなく,風穴現象によって生 じた低温環境である.

瀬戸瀬氷穴では,基盤の流紋岩の開口節理に 人工の坑道が貫通したことにより,空気の移流 がより活発となって強烈な風穴現象が引き起こ され,坑道の洞内は氷塊で充填されて永久凍土 が形成されている可能性が高い.今後の発掘調 査が期待される.

瀬戸瀬山風穴では風穴による低温環境によっ て高山植物のエゾイソツツジの群落が成立し, エゾナキウサギの主要な生息地であることが確 認された.また,武利風穴では風穴の低温環境 が高山植物のコケモモが密生する群落を形成し ている.

風穴にともなう低温環境が植物群落の分布に 影響を与えることは本州でも知られているが, 本州よりもさらに低温環境となる北海道では, より寒冷地の植物群落が成立している.

謝辞

現地調査では,北海道立遠軽高校の杉山俊明先 生および遠軽町ジオパーク推進課の方々,網走西 部森林管理署の方々,元ひがし大雪博物館の川辺

百樹氏,株式会社ドルック代表取締役齋藤啓一氏, 駒澤大学学生の寒河江景子, 遠藤海斗, 山下記代 の各氏には大変お世話になりました。 位置図の作 成にあたっては東京学芸大学大学院生の福地慶大 氏に助力いただきました、心より御礼いたします。 また、不肖の弟子でありながらいつも暖かくご指 導いただき、30年以上にわたって今なお、お付き 合いいただいている我らが恩師小泉武栄先生に改 めて感謝の気持ちと退職のお祝いを述べさせてい ただきます. なお、小泉先生は日本ジオパーク委 員会委員として遠軽地域を訪れ、白滝ジオパーク の日本ジオパーク加盟認定のための審査をされた. 筆者らは、審査の数日前にジオパーク推進課の方々 と懇談しており、 奇遇にもその折に小泉先生の来 訪を初めて知った. そして武利風穴のコケモモ群 落を視察地点に加えることを具申した結果,小泉 先生らも現地へ行かれ,風穴とコケモモ群落の関 係を見られて納得されたとのことであった.

本研究を行うに当たっては,2008・2009・2010・ 2011 年度芝浦工業大学個人研究費を使用した.

文献

遠軽町編(1977):『遠軽町史』遠軽町, 1291p.

- 川辺百樹(2008):北海道におけるエゾナキウサギ の分布.ひがし大雪博物館研究報告,30,1-20. 車田利夫(2005):置戸山地中山「春日風穴」付近 におけるエゾナキウサギの生息数及び環境利用. 北海道環境科学研究センター調査報告書,32, 101-106.
- 澤田結基・石川 守(2003):北海道中央部西ヌプ カウシヌプリにおける岩塊斜面の永久凍土環境. 地学雑誌,111,555-563.
- 志保井利夫(1973):北見地方でみられる周氷河地 形現象-異常低温地点を中心に-.北見工業大学 研究報告,4(2),303-320.
- 志保井利夫(1974):常紋山稜地域で見られる周氷 河地形現象-異常低温地点の機構-. 北見工業大 学研究報告, 5(2), 213-242.

- 志保井利夫(1975a): 湧別川流域の周氷河地形現 象--オホーツク海岸の ice-shove ridge-. 北見 工業大学研究報告, 6(2), 139-159.
- 志保井利夫(1975b):北見地方でみられる周氷河 現象についての考察(補遺).北見工業大学研究 報告,7(1),163-194.
- 清水長正・山川信之・鈴木由告(1988):ひがし大
 雪地域における夏期凍結層の確認(I).ひがし
 大雪博物館研究報告, 10, 1-9.
- 清水長正・山川信之(2001):ひがし大雪地域にお ける夏期凍結層の確認(Ⅱ).ひがし大雪博物館 研究報告,23,21-31.
- 清水長正(2004):日本における風穴の資料-地形 条件・永久凍土などとの関連から-. 駒澤地理, 40, 121-148.
- 鈴木由告・山川信之・清水長正(1987):十勝三股 十四之沢の永久凍土上の森林植生.ひがし大雪 博物館研究報告, 9, 1-14.
- 曽根敏雄(2004):北海道置戸町鹿ノ子ダム左岸の風穴地における越年性凍土.雪氷,66,227-233.
- 北海道開発庁(1967):5万分の1地質図幅説明書『丸 瀬布』. 28p.

Ice-Holes and Low-Temperature Phenomena in the Engaru District, Southern Part of the Kitami Mountains, Hokkaido

YAMAKAWA Nobuyuki* and SHIMIZU Chousei**

Keywords: ice-hole, low-temperature phenomena, permafrost, *Ledum palustre* ssp. *diversipilosum* community, *Vaccinium vitis-idaea* community

** Komazawa Univ.

^{*} Shibaura Institute of Technology, Junior and Senior High School