Tokyo Gakugei University Repository

A note on subfields of the real number field

メタデータ	言語：eng
	出版者：
	公開日：2012－10－25
	キーワード（Ja）：
	キーワード（En）：
	作成者：KITAMURA，Yoshimi
	メールアドレス：
	所属：
URL	http：／／hdl．handle．net／2309／131819

A note on subfields of the real number field

Yoshimi KITAMURA*
Department of Mathematics

(Received for Publication; May 25, 2012)

KITAMURA, Y.: A note on subfields of the real number field. Bull. Tokyo Gakugei Univ. Div. Nat. Sci., 64: 1-4 (2012)
ISSN 1880-4330

Abstract

As is well-known, the rational number field is countable but the real number field \mathbb{R} is uncountable. The purpose of this note is to give a positive answer to a question in Y. Tanaka [2]: Is there an uncountable and proper subfield in \mathbb{R} ?

Key words and phrases: real number field, subfield, algebraically independent.

Department of Mathematics, Tokyo Gakugei University, 4-1-1 Nukuikita-machi, Koganei-shi, Tokyo 184-8501, Japan

Introduction

The notations \mathbb{R} and \mathbb{Q} denote the real number field and the rational number field, respectively.
As is well-known, \mathbb{Q} is countable but \mathbb{R} is uncountable. Y. Tanaka posed the following question in [2]: Is there an uncountable and proper subfield of \mathbb{R} ? In this note, we shall show the existence of such a subfield, which gives an affirmative answer to the question.

Results

The following assertion gives the affirmative answer in Introduction.

Assertion. There exists an uncountable and proper subfield of \mathbb{R}.

This assertion might be known, but we will show it for the reader's conveniences. First, let us recall the following.

Lemma 1. Let D be a countable subfield of \mathbb{R}. Then there exists a real number which is not algebraic over D.

[^0]Proof. Let A be the set of all algebraic real numbers over D. As is well-known, A is countable (see [1], for example). Therefore, there exists a real number which is not algebraic over D.

Definition ([1]). A finite set $\left\{c_{1}, \ldots, c_{n}\right\}$ of real numbers is said to be algebraically independent over \mathbb{Q}, provided that a finite sum

$$
\sum a_{\left(\alpha_{1}, \ldots, \alpha_{n}\right)} c_{1}^{\alpha_{1} \ldots c_{n}^{\alpha_{n}}}
$$

with coefficients $a_{\left(\alpha_{1}, \ldots, \alpha_{n}\right)}$ in \mathbb{Q} and non-negative integers $\alpha_{1}, \ldots, \alpha_{n}$ can be zero iff all coefficients $a_{\left(\alpha_{1}, \ldots, \alpha_{n}\right)}$ are zero. A subset B of \mathbb{R} is said to be algebraically independent over \mathbb{Q}, provided that an arbitrary finite subset of B is algebraically independent over \mathbb{Q}.

The following is a key lemma to Assertion.

Lemma 2. There exists an uncountable subset B of \mathbb{R} which is algebraically independent over \mathbb{Q}.

Proof. Let \mathcal{F} be the collection of all subsets of \mathbb{R} which are algebraically independent over \mathbb{Q}. Obviously, \mathcal{F} is not empty. Let us define a partial order on \mathcal{F} by inclusion. By Zorn's Lemma, there exists a maximal member in \mathcal{F}. Let B be such a member in \mathcal{F}. If B were countable, by Lemma 1 , there is some a in \mathbb{R} such that a is not algebraic over B, so that $B \cup\{a\}$ is algebraically independent over \mathbb{Q}. This contradicts to the maximality of B in \mathcal{F}. Hence B is uncountable.

Let $\left\{c_{1}, \ldots, c_{n}\right\}$ be a finite set of real numbers which is algebraically independent over \mathbb{Q}. We may assume $c_{1}<\cdots<c_{n}$. For a non-zero polynomial

$$
h=\sum a_{\left(\alpha_{1}, \ldots, \alpha_{n}\right)} c_{1}^{\alpha_{1} \ldots c_{n}^{\alpha_{n}}}
$$

with coefficients $a_{\left(\alpha_{1}, \ldots, \alpha_{n}\right)}$ in \mathbb{Q} and non-negative integers $\alpha_{1}, \ldots, \alpha_{n}$, the exponent of h is defined as follows: Let S be the collection of all exponents $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of non-zero monomials $a_{\left(\alpha_{1}, \ldots, \alpha_{n}\right)} c_{1}^{\alpha_{1}} \ldots c_{n}^{\alpha_{n}}$ of h. Then S has an order defined by the usual lexicographic order, and the largest element of S is called the exponent of h. Let us define the leading coefficient of h as the coefficient of the monomial of h that gives the exponent of h.

Proposition 3. Let B be an uncountable subset of \mathbb{R} which is algebraically independent over \mathbb{Q}. Then the subfield $\mathbb{Q}(B)$ of \mathbb{R} generated by B never contains $\sqrt{2}$. Therefore, $\mathbb{Q}(B)$ is an uncountable and proper subfield of \mathbb{R}.

Proof. We note that such a set B exists by Lemma 2. Clearly, $\mathbb{Q}(B)$ is uncountable. Suppose the contrary that $\mathbb{Q}(B)$ contains $\sqrt{2}$. Then, we may assume that there exist polynomials $f\left(x_{1}, \ldots, x_{n}\right), g\left(x_{1}, \ldots, x_{n}\right)$ with coefficients in \mathbb{Q} and a finite subset $\left\{c_{1}, \ldots, c_{n}\right\}$ of B such that

$$
\sqrt{2}=\frac{f\left(c_{1}, \ldots, c_{n}\right)}{g\left(c_{1}, \ldots, c_{n}\right)},
$$

where $g\left(c_{1}, \ldots, c_{n}\right) \neq 0$. Hence, we have

$$
2 g\left(c_{1}, \ldots, c_{n}\right)^{2}=f\left(c_{1}, \ldots, c_{n}\right)^{2}
$$

Comparing the leading coefficients of right and left hands, we have $2 b^{2}=a^{2}$ for suitable numbers a, b in \mathbb{Q}, because $\left\{c_{1}, \ldots, c_{n}\right\}$ is algebraically independent over \mathbb{Q}. This is a contradiction. Therefore $\mathbb{Q}(B)$ never contains $\sqrt{2}$, completing the proof.

Proof of Assertion. Assertion is now obvious from Proposition 3.

Acknowledgement: The author wishes to thank Professor Y. Tanaka for his helpful comments.

References

[1] G. Birkhoff and S. Maclane, A survey of modern algebra, 3rd ed., Macmillan, 1965
[2] Y. Tanaka, Report (2011).

実数体の部分体に関するノート

北 村 好

数学分野

要 旨

よく知られているように有理数体は可算であり，実数体は非可算である。本論文において，「実数体には非可算 な真部分体が存在する」を示す。これは，「実数体には非可算な真部分体が存在するか？」（Y．Tanaka，Report（2011）） に対する肯定解を与えている。

キーワード：実数体，部分体，代数的独立

[^0]: * Tokyo Gakugei University (4-1-1 Nukuikita-machi, Koganei-shi, Tokyo, 184-8501, Japan)

