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Abstract

As is well-known, the rational number field is countable but the real number field R is uncountable. The purpose of

this note is to give a positive answer to a question in Y. Tanaka [2]: Is there an uncountable and proper subfield in R?
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Introduction

The notations R and Q denote the real number field and the rational number field, respectively.

As is well-known, Q is countable but R is uncountable. Y. Tanaka posed the following question in [2]: Is there an
uncountable and proper subfield of R? In this note, we shall show the existence of such a subfield, which gives an affirmative
answer to the question.

Results

The following assertion gives the affirmative answer in Introduction.

Assertion. There exists an uncountable and proper subfield of R.

This assertion might be known, but we will show it for the reader’s conveniences. First, let us recall the following.

Lemma 1. Let D be a countable subfield of R. Then there exists a real number which is not algebraic over D.
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Proof. Let A be the set of all algebraic real numbers over D. As is well-known, 4 is countable (see [1], for example).

Therefore, there exists a real number which is not algebraic over D. (J

Definition ([1]). A finite set {c1, ..., c,} of real numbers is said to be algebraically independent over QQ, provided that a finite sum

2 a, cal... ca”
(aq, ..., ay) €1 n

with coefficients a(q,, ay) are zero. A subset

vy

ey

B of R is said to be algebraically independent over QQ, provided that an arbitrary finite subset of B is algebraically independent

over Q.
The following is a key lemma to Assertion.
Lemma 2. There exists an uncountable subset B of R which is algebraically independent over Q.

Proof. Let F be the collection of all subsets of R which are algebraically independent over Q. Obviously, ¥ is not empty. Let
us define a partial order on F by inclusion. By Zorn’s Lemma, there exists a maximal member in #. Let B be such a member in
. If B were countable, by Lemma 1, there is some a in R such that « is not algebraic over B, so that B U {a} is algebraically

independent over Q. This contradicts to the maximality of B in #. Hence B is uncountable. [

Let {ci, ..., ¢y} be a finite set of real numbers which is algebraically independent over Q. We may assume ¢ < ‘- < ¢,. For a

non-zero polynomial

— (03] ay
h= Z a(ab cees @) Cl - Cn

with coefficients @, .., «,) in Q and non-negative integers a1, ..., @, the exponent of # is defined as follows: Let S be the
collection of all exponents (e, ..., @,) of non-zero monomials a(q,, ..., a,) ¢ cy” of h. Then S has an order defined by the usual
lexicographic order, and the largest element of S is called the exponent of /. Let us define the leading coefficient of % as the

coefficient of the monomial of / that gives the exponent of 4.

Proposition 3. Let B be an uncountable subset of R which is algebraically independent over Q. Then the subfield Q (B) of R
generated by B never contains V2. Therefore, Q (B) is an uncountable and proper subfield of R.

Proof. We note that such a set B exists by Lemma 2. Clearly, Q (B) is uncountable. Suppose the contrary that QQ (B) contains
V2. Then, we may assume that there exist polynomials f(x1, ..., x,), g (x1, ..., X,) With coefficients in Q and a finite subset

{c1, ..., ¢y} of B such that

_f‘(cla ceey ci’l)
ﬁ_g(cl, o Cn)’

where g(cy, ..., ¢y) # 0. Hence, we have
2g(c1, .., cn)?=f(c1, ..., Cp)?.

Comparing the leading coefficients of right and left hands, we have 2b2? = @2 for suitable numbers a, b in Q, because {cy, ..., c;}

is algebraically independent over Q. This is a contradiction. Therefore Q (B) never contains V2, completing the proof. O
Proof of Assertion. Assertion is now obvious from Proposition 3. [J
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