

東京学芸大学リポジトリ

Tokyo Gakugei University Repository

A note on subfields of the real number field

メタデータ	言語: English
	出版者:
	公開日: 2012-10-25
	キーワード (Ja):
	キーワード (En):
	作成者: KITAMURA,Yoshimi
	メールアドレス:
	所属:
URL	http://hdl.handle.net/2309/131819

A note on subfields of the real number field

Yoshimi KITAMURA*

Department of Mathematics

(Received for Publication; May 25, 2012)

KITAMURA, Y.: A note on subfields of the real number field. Bull. Tokyo Gakugei Univ. Div. Nat. Sci., 64: 1-4 (2012) ISSN 1880-4330

Abstract

As is well-known, the rational number field is countable but the real number field \mathbb{R} is uncountable. The purpose of this note is to give a positive answer to a question in Y. Tanaka [2]: Is there an uncountable and proper subfield in \mathbb{R} ?

Key words and phrases: real number field, subfield, algebraically independent.

Department of Mathematics, Tokyo Gakugei University, 4-1-1 Nukuikita-machi, Koganei-shi, Tokyo 184-8501, Japan

Introduction

The notations $\mathbb R$ and $\mathbb Q$ denote the real number field and the rational number field, respectively.

As is well-known, \mathbb{Q} is countable but \mathbb{R} is uncountable. Y. Tanaka posed the following question in [2]: Is there an uncountable and proper subfield of \mathbb{R} ? In this note, we shall show the existence of such a subfield, which gives an affirmative answer to the question.

Results

The following assertion gives the affirmative answer in Introduction.

Assertion. There exists an uncountable and proper subfield of \mathbb{R} .

This assertion might be known, but we will show it for the reader's conveniences. First, let us recall the following.

Lemma 1. Let D be a countable subfield of \mathbb{R} . Then there exists a real number which is not algebraic over D.

^{*} Tokyo Gakugei University (4-1-1 Nukuikita-machi, Koganei-shi, Tokyo, 184-8501, Japan)

Proof. Let A be the set of all algebraic real numbers over D. As is well-known, A is countable (see [1], for example). Therefore, there exists a real number which is not algebraic over D. \Box

Definition ([1]). A finite set $\{c_1, ..., c_n\}$ of real numbers is said to be *algebraically independent* over \mathbb{Q} , provided that a finite sum

$$\sum a_{(\alpha_1,\ldots,\alpha_n)} c_1^{\alpha_1} \cdots c_n^{\alpha_n}$$

with coefficients $a_{(\alpha_1, ..., \alpha_n)}$ in \mathbb{Q} and non-negative integers $\alpha_1, ..., \alpha_n$ can be zero iff all coefficients $a_{(\alpha_1, ..., \alpha_n)}$ are zero. A subset *B* of \mathbb{R} is said to be algebraically independent over \mathbb{Q} , provided that an arbitrary finite subset of *B* is algebraically independent over \mathbb{Q} .

The following is a key lemma to Assertion.

Lemma 2. There exists an uncountable subset *B* of \mathbb{R} which is algebraically independent over \mathbb{Q} .

Proof. Let \mathcal{F} be the collection of all subsets of \mathbb{R} which are algebraically independent over \mathbb{Q} . Obviously, \mathcal{F} is not empty. Let us define a partial order on \mathcal{F} by inclusion. By Zorn's Lemma, there exists a maximal member in \mathcal{F} . Let *B* be such a member in \mathcal{F} . If *B* were countable, by Lemma 1, there is some *a* in \mathbb{R} such that *a* is not algebraic over *B*, so that $B \cup \{a\}$ is algebraically independent over \mathbb{Q} . This contradicts to the maximality of *B* in \mathcal{F} . Hence *B* is uncountable. \Box

Let $\{c_1, ..., c_n\}$ be a finite set of real numbers which is algebraically independent over \mathbb{Q} . We may assume $c_1 < \cdots < c_n$. For a non-zero polynomial

$$h = \sum a_{(\alpha_1, \dots, \alpha_n)} c_1^{\alpha_1} \cdots c_n^{\alpha_n}$$

with coefficients $a_{(\alpha_1, ..., \alpha_n)}$ in \mathbb{Q} and non-negative integers $\alpha_1, ..., \alpha_n$, the exponent of *h* is defined as follows: Let *S* be the collection of all exponents $(\alpha_1, ..., \alpha_n)$ of non-zero monomials $a_{(\alpha_1, ..., \alpha_n)}c_1^{\alpha_1}...c_n^{\alpha_n}$ of *h*. Then *S* has an order defined by the usual lexicographic order, and the largest element of *S* is called the exponent of *h*. Let us define the leading coefficient of *h* as the coefficient of the monomial of *h* that gives the exponent of *h*.

Proposition 3. Let *B* be an uncountable subset of \mathbb{R} which is algebraically independent over \mathbb{Q} . Then the subfield $\mathbb{Q}(B)$ of \mathbb{R} generated by *B* never contains $\sqrt{2}$. Therefore, $\mathbb{Q}(B)$ is an uncountable and proper subfield of \mathbb{R} .

Proof. We note that such a set *B* exists by Lemma 2. Clearly, $\mathbb{Q}(B)$ is uncountable. Suppose the contrary that $\mathbb{Q}(B)$ contains $\sqrt{2}$. Then, we may assume that there exist polynomials $f(x_1, ..., x_n)$, $g(x_1, ..., x_n)$ with coefficients in \mathbb{Q} and a finite subset $\{c_1, ..., c_n\}$ of *B* such that

$$\sqrt{2} = \frac{f(c_1, ..., c_n)}{g(c_1, ..., c_n)},$$

where $g(c_1, ..., c_n) \neq 0$. Hence, we have

$$2g(c_1, ..., c_n)^2 = f(c_1, ..., c_n)^2$$
.

Comparing the leading coefficients of right and left hands, we have $2b^2 = a^2$ for suitable numbers *a*, *b* in \mathbb{Q} , because $\{c_1, ..., c_n\}$ is algebraically independent over \mathbb{Q} . This is a contradiction. Therefore $\mathbb{Q}(B)$ never contains $\sqrt{2}$, completing the proof. \Box

Proof of Assertion. Assertion is now obvious from Proposition 3. \Box

Acknowledgement: The author wishes to thank Professor Y. Tanaka for his helpful comments.

References

[1] G. Birkhoff and S. Maclane, A survey of modern algebra, 3rd ed., Macmillan, 1965.

[2] Y. Tanaka, Report (2011).

実数体の部分体に関するノート

北村 好

数学分野

要 旨

よく知られているように有理数体は可算であり、実数体は非可算である。本論文において、「実数体には非可算 な真部分体が存在する」を示す。これは、「実数体には非可算な真部分体が存在するか?」(Y. Tanaka, Report (2011)) に対する肯定解を与えている。

キーワード:実数体,部分体,代数的独立