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Abstract

 The purpose of this paper is to extend a recent result of W. Willems and A. Zimmermann on self-dual modules of group rings of 

finite groups over fields to symmetric algebras with anti-algebra automorphisms over commutative rings.  They have proved the 

following.  Let K be a field.  Let K[G] and K[H] be group rings of finite groups G and H over K respectively.  If M is a self-dual (K[G], 

K[H])-bimodule which is projective as a K[G]-module and V is a self-dual K[G]-left module, then M ⊗K[G] V  is a self-dual K[H]-

left module.  It is well known that group rings of finite groups over fields are symmetric algebras with anti-algebra automorphisms.  

In this paper, generalizing fields to commutative rings, we consider algebras with anti-algebra automorphisms over commutative 

rings and obtain the following result.  Let k be a commutative ring.  Let R be an algebras over k with anti k-algebra endomorphism 

ρ : R→ R  and S be a symmetric algebras over k with anti k-algebra automorphism σ : S → S .  Let M and N be (R, S)-bimodules such 

that M is isomorphic to Hom k(N, k) as an (R, S)-bimodule and N is finitely generated projective as a right S-module.  Let V and W be 

left S-modules such that V is isomorphic to Hom k(W, k) as a left S-module.  Then M ⊗S V  is isomorphic to Hom k(N ⊗SW, k) as a left 

R-module.  For a field K and finite groups G, H, setting k = K, N = M, W = V, this result yields their result immediately.
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1  Introduction

The aim of this note is to extend the result of W. Willems and A. Zimmermann [2, Proposition 3.3] to algebras over commutative 

rings.  

 They have considered group rings of finite groups over fields in there.  Such group rings are symmetric algebras with anti-

automorphisms.  We shall consider algebras with anti-algebra endomorphisms over commutative rings in this note.  

 Let k be a commutative ring.  First we deal with dual modules of k-modules, Frobenius algebras and symmetric algebras over k 

relative to bi-linear forms.  Second we study two-sided modules and k-algebras with anti-algebra homomorphisms, in particular, 

symmetric k-algebras with anti-automorphisms.  Let R and S be algebras over k with anti k-algebra homomorphisms ρ : R→ R  and 

σ : S → S .  Then, for every left R-module X, its dual module Homk(X, k) becomes a left R-module via ρ .  Moreover, if M is an (R, 

S)-bimodule, then Homk(M, k) becomes an (R, S)-bimodule via ρ  and σ. The result mentioned in the abstract above is our main one 

of the present paper.  This extends Proposition 3.3 of [2] to symmetric algebras with anti-automorphisms over commutative rings.

2   Dual modules over commutative rings

Throughout this note, every ring is associative with identity, every module is unital and k denotes a commutative ring.  Further, for a 

k-module X, the k-dual module Homk(X, k) of X is denoted by X*. We refer to [1] for other unexplained terminology.  

 Let begin by recalling the following well-known lemma.  For the reader’s conveniences, we give the proof.  

Lemma 2.1  For k-modules M and N, the following are equivalent:

  (1) M  N∗ as k-modules and N is finitely generated projective as a k-module.  

  (2)  There exist a non-degenerate k-bilinear form (−,−) : M×N → k and a finite number of elements xi ∈ M,yi ∈ N (i = 1, . . . ,n) 

such that y =
�n

i=1(xi ,y)yi  for all y in N.  

Proof. (1)⇒(2).  Let ϕ : M → N∗ be a k-isomorphism.  Define (−,−) : M×N → k by (x,y) = ϕ(x)(y)  for x ∈ M,y ∈ N .  Then 

(−,−) is a k-bilinear form such that (x, y) = 0 for all y ∈ Y  implies x = 0.  Since N is a finitely generated projective k-module, there 

exist a finite number of elements gi ∈ N∗, yi ∈ N (i = 1, . . . ,n) with y =
�

i gi (y)yi  for all y ∈ N .  For each i = 1, . . . ,n, there exists 

an element xi of M with gi = ϕ(xi).  Then we have y =
�n

i=1 (xi,y)yi .  Moreover assume that (x, y) = 0 for all x ∈ M.  Then we have 

y =
�n

i=1 (xi,y)yi = 0.  Hence the k-bilinear form (−,−) is non-degenerate.  

 (2)⇒(1).  Let (−,−) : M×N → k  be a k-bilinear form and xi ∈ M,yi ∈ N (i = 1, . . . ,n) elements satisfying the conditions in (2).  

Define ϕ : M → N∗ by ϕ(x)(y) = (x,y) for x ∈ M,y ∈ N.  Then ϕ is a k-homomorphism evidently.  Assume ϕ(x) = 0.  Then, since 

(x, y) = 0 for all y in N, we have x = 0, and so ϕ is a monomorphism.  For each i = 1, . . . ,n , let set gi = ϕ(xi) ∈ N∗.  Then we have 
�

i gi(y)yi =
�

i(xi,y)yi = y, and so N is a finitely generated projective k-module.  Let g be a k-homomorphism of N to k.  Setting 

x =
�

i g(yi)xi , we have 
 
ϕ(x)(y) = (x,y) = (

�

i

g(yi)xi,y) =
�

i

g(yi)(xi,y) = g(
�

i

(xi,y)yi) = g(y) (y ∈ N),

and so g = ϕ(x).  It follows that ϕ is a k-isomorphism.  

Corollary 2.2  For a k-module M, the following are equivalent:

  (1) M is finitely generated projective as a k-module and M  M∗ as k-modules.  

  (2)  There exist a non-degenerate k-bilinear form (−,−) : M×M → k  and a finite number of elements xi,yi ∈ M (i = 1, . . . ,n) such 

that x =
�n

i=1 (xi, x)yi =
�n

i=1 (x,yi)xi for all x in M.

Proof.  (1)⇒(2).  By Lemma 2.1, there exist a non-degenerate k-bilinear form (−,−) : M×M → k and a finite number of elements 

xi,yi in M such that x =
�

i(xi, x)yi for all x ∈ M.  Since 
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(
�

i

(x,yi)xi,y) =
�

i

(x,yi)(xi,y) = (x,
�

i

(xi,y)yi) = (x,y) (∀y ∈ M),

we have x =
�

i(x,yi)xi.  Thus we have (2).  The implication (2)⇒(1) is evident from Lemma 2.1.  

 Let R be an algebra over k.  Let X be a left R-module.  Then the k-dual module X∗: = Hom k(X, k) becomes naturally a right 

R-module defined by  
( f .r)(x) = f (rx) ( f ∈ X∗,r ∈ R, x ∈ X).

Similarly, for a right R-module Y, Y∗ becomes a left R-module defined by 
(r.g)(y) = g(yr) (g ∈ Y∗,r ∈ R,y ∈ Y).

In particular R∗:= Homk(R, k) becomes an (R, R)-bimodule defined by 
(a. f .b)(r) = f (bra) (a,b,r ∈ R, f ∈ R∗).

Proposition 2.3  For a k-algebra R, the following are equivalent:

  (1) R is finitely generated projective as a k-module and R  R∗ as right R-modules.

  (2)  There exist a non-degenerate k-bilinear form (−,−) : R×R→ k and a finite number of elements xi,yi ∈ R (i = 1, . . . ,n) such that  
(xy,z) = (x,yz) (x,y,z ∈ R),

 
x =


i
(xi, x)yi =



i
(x,yi)xi (x ∈ R).

  (3) R is finitely generated projective as a k-module and R  R∗ as left R-modules.

 If the k-algebra R satisfies these equivalent conditions,  then R is called a Frobenius k-algebra. 

Proof.  (1)⇒(2).  Let ϕ : R → R∗ be an isomorphism as a right R-module.  As shown in the proof of Corollary 2.2, the k-bilinear 

form (−,−) : R×R→ k defined by (x,y) = ϕ(x)(y)  for x, y in R is non-degenerate and there exist a finite number of elements 

xi ,yi (i = 1, . . . ,n) in R such that  

x =
�

i

(xi, x)yi =
�

i

(x,yi)xi (x ∈ R).

Further we have (xy,z) = ϕ(xy)(z) = (ϕ(x).y)(z) = ϕ(x)(yz) = (x,yz).

 (2)⇒(1).  Let (−,−) : R×R→ k  be a k-bilinear form and xi,yi (i = 1, . . . ,n) elements in R satisfying the conditions in (2).  Define 

ϕ : R → R∗ by ϕ(x)(y) = (x,y) for x, y in R.  By the proof of Lemma 2.1, ϕ is a k-isomorphism.  Since (xy, z) = (x, yz), we have 

ϕ(xy)(z) = (ϕ(x).y)(z).  Hence ϕ is a right R-homomorphism, and so, it is a right R-isomorphism.  Noting x =
�

i(xi, x)yi, R is a 

finitely generated projective k-module.   Therefore we have (1).  

 We can show the equivalence (2)⇔(3) similarly.  

Remark 1  If R is a Frobenius algebra over k and xi ,yi (i = 1, . . . ,n) are elements of R given in Proposition 2.3 (2), then, for all 

r ∈ R, we have 
�

i ryi ⊗ xi =
�

i yi ⊗ xir in R⊗k R.  

 This can be shown as follows.  Let ϕ : R → R∗ be the R-isomorphism given in (2)⇒(1).  Since R is a finitely generated 

projective k-module, there exists an isomorphism θ : R⊗k R∗ → Hom k(R, R) given by θ(r⊗ f ) = r. f .  Then the element 
�

i yi ⊗ xi 

of R⊗k R is corresponding to the identity element of Hom k(R, R) in the composite R⊗k R � R⊗k R∗ � Hom k(R, R).  It follows that 
�

i ryi ⊗ xi =
�

i yi ⊗ xir for all r ∈ R.  

Corollary 2.4  For a k-algebra R, the following are equivalent:

  (1) R is finitely generated projective as a k-module and R  R∗ as (R, R)-bimodules.

  (2)  There exist a non-degenerate k-bilinear form (−,−) : R×R→ k and a finite number of elements xi,yi ∈ R (i = 1, . . . ,n)
 
such that 

 (xy,z) = (x,yz), (x,y) = (y, x) (x,y,z ∈ R),

 
x =
�

i

(xi, x)yi =
�

i

(x,yi)xi (x ∈ R).
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 If the k-algebra R satisfies these equivalent conditions,  then R is called a symmetric k-algebra. 

Proof.  (1)⇒(2).  Let ϕ : R → R∗ be an isomorphism as an (R, R)-bimodule.  Then we have x.ϕ(1) = ϕ(x) = ϕ(1).x for x in R.  For 

x,y ∈ R, let define (x,y) ∈ k by (x,y) = ϕ(x)(y).  Then we have (x, y) = (y, x) and (xy, z) = (x, yz).  Further, as shown above, the 

k-bilinear form (−,−) : R×R→ k is non-degenerate and there exist a finite number of elements xi,yi ∈ R (i = 1, . . . ,n) satisfying the 

condition in (2).  

 (2)⇒(1).  Let (−,−) : R×R→ k be a k-bilinear form given in (2).  Define ϕ : R → R∗ by ϕ(x)(y) = (x,y) for x, y in R.  Then we 

have

 ϕ(uxv)(z) = (uxv,z) = (u, xvz) = (xvz,u) = (x,vzu) = (u.ϕ(x).v)(z) (u,v, x,z ∈ R).

Thus ϕ is an isomorphism as an (R, R)-bimodule by the proof of Proposition 2.3.  

3   Symmetric algebras with anti-algebra automorphisms

Let R be an algebra over k.  Recall that an anti k-algebra homomorphism ρ : R→ R is a k-module homomorphism with 

ρ(ab) = ρ(b)ρ(a) for all a,b ∈ R and ρ(1) = 1.  

 Henceforth R and S denote k-algebras with anti k-algebra homomorphisms ρ : R→ R and σ : S → S.  

 Let X be a left R-module.  Then X becomes a right R-module defined by x ∗ r = ρ(r)x for r ∈ R, x ∈ X.  This module is denoted by 

Xρ.  If Y is a right S-module, then the left S-module σY  is similarly defined  by s∗ y = yσ(s) for s ∈ S ,y ∈ Y .  Further, if M is an (R, 

S)-bimodule, then the (S, R)-bimodule σMρ is defined by s∗m∗ r = ρ(r)mσ(s) for r ∈ R, s ∈ S ,m ∈ M.  

 For a left (resp. right) R-module X, X∗ becomes a right (resp. left) R-module defined by ( f .r)(x) = f (rx) (resp. (r. f )(x) = f (xr)) 

for r ∈ R, f ∈ X∗, x ∈ X .  Therefore the left (resp. right) R-module ρX∗ (resp. X∗ρ ) may be defined as mentioned above.  Moreover if 

M is an (R, S)-bimodule, then we can consider the (R, S)-bimodule ρM∗σ  naturally; 

 (r ∗ f ∗ s)(m) = f (ρ(r)mσ(s)) (r ∈ R, s ∈ S , f ∈ M∗,m ∈ M).

It is clear that X  Y as right R-modules implies ρX � ρY  as left R-modules and that M  N  as (R, S)-bimodules does σMρ � σNρ as 

(S, R)-bimodules.  

Definition 1  Let M and N be (R, S)-bimodules.  A k-bilinear form (−,−) : M×N → k is said to be (R, S)-invariant provided that 

(rxs,y) = (x,ρ(r)yσ(s)) for all r ∈ R, s ∈ S , x ∈ M,y ∈ N .

Remark 2  Let G and H be finite groups.  Let R and S be group rings of G and H over k respectively.  Let ρ : R→ R and σ : S → S 

be the mappings defined by

 
ρ(
�

g∈G
agg) =

�

g∈G
agg−1 (ag ∈ k),

 
(
�

h∈H
bhh) =

�

h∈H
bhh−1 (bh ∈ k),σ

Then R and S are symmetric algebras over k with anti k-algebra isomorphisms ρ and σ such that ρ2 = I and σ2 = I.  It is easy 

to see that, for (R, S)-bimodules M and N, a k-bilinear form (−,−) : M×N → k is (R, S)-invariant iff (gxh, gyh) = (x, y) for all 

x ∈ M,y ∈ N,g ∈ G,h ∈ H .

Lemma 3.1  Let M and N be (R, S)-bimodules.  Suppose that N is finitely generated projective as a right S-module.  Then the 

following are equivalent:  

  (1) M � ρN∗σ  as (R, S)-bimodules.

  (2) There exists a non-degenerate k-bilinear form (−,−) : M×N → k such that (−,−) is (R, S)-invariant.

Proof.  (1)⇒(2).  Let ϕ : M→ ρN∗σ  be an isomorphism as an (R, S)-bimodule.  Define (−,−) : M×N → k by (x,y) = ϕ(x)(y) for 

x ∈ M and y ∈ N.  Then (−,−) is a non-degenerate k-bilinear form by the proof of Lemma 2.1.  Since ϕ is an (R, S)-homomorphism, 
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we have ϕ(rxs) = r ∗ϕ(x) ∗ s for r ∈ R, x ∈ X, s ∈ R, and so, 

 (rxs,y) = ϕ(rxs)(y) = (r ∗ϕ(x) ∗ s)(y) = ϕ(x)(ρ(r)yσ(s)) = (x,ρ(r)yσ(s)),

from which we have (rxs,y) = (x,ρ(r)yσ(s)).  It follows that (−,−) is (R, S)-invariant.  

 (2)⇒(1).  Let (−,−) : M×N → k be a k-bilinear form given in (2).  Define ϕ : M→ ρN∗σ  by ϕ(x)(y) = (x,y) for x ∈ M,y ∈ N .  

Then ϕ is a k-isomorphism.  Since the k-bilinear form (−,−) is (R, S)-invariant, ϕ is an (R, S)-linear map.  Hence we have M � ρN∗σ 

as (R, S)-bimodules.  

 Let X be an (R, S)-bimodule.  Then Hom(XS, SS) consisting of all S-homomorphisms of X to S becomes an (S, R)-bimodule given by 

 (s.α.r)(x) = sα(rx) (r ∈ R, s ∈ S , x ∈ X,α ∈ Hom(XS, SS)).  

Thus we have the (R, S)-bimodule ρHom(XS, SS)σ defined by r ∗α∗ s = σ(s).α.ρ(r). 

 The following is well-known.  For the reader’s conveniences, we give the proof.  

Lemma 3.2  Let A and B be rings.  Let X be a right A-module, Y an (A, B)-bimodule and Z a right B-module.  If X is a finitely 

generated projective right A-module, then there exists a -isomorphism

 λ: Hom(YB, ZB)⊗A Hom(XA, AA)→ Hom(X⊗AYB, ZB)

given by 

 λ(g⊗α)(x⊗ y) = g(α(x)y)   (g ∈ Hom(YB, ZB), α ∈ Hom(XA, AA), x ∈ X, y ∈ Y). 

Proof.   Since X is a finitely generated projective A-module, there exist a finite number of elements αi ∈ Hom(XA, AA) and 

xi ∈ X (i = 1, . . . ,n) such that x =
�

i xiαi(x) for all x ∈ X .  Define 

 µ: Hom(X ⊗AYB, ZB) → Hom(YB, ZB) ⊗A Hom(XA, AA)

by µ(γ) =
�

i γi ⊗αi for γ ∈ Hom(X ⊗AYB, ZB), where γi ∈ Hom(YB, ZB) is given by γi(y) = γ(xi ⊗ y) for y ∈ Y .  Noting x =
�

i xiαi(x), 

we have µ◦λ = I, λ◦µ = I.  It follows that λ is an isomorphism.  

Lemma 3.3  Suppose that S is a symmetric k-algebra.  For an (R, S)-bimodule X, we have an (S, R)-bimodule isomorphism

 Homk(X, k)  Hom(XS, SS). 

Proof.  Noting that S is a symmetric algebra over k, let (−,−) : S ×S → k be a k-bilinear form and si, ti (i = 1, . . . ,n)  elements of 

S satisfying the conditions in Corollary 2.4 (2).  Define  ϕ : S → S ∗ by ϕ(s)(t) = (s, t) for s, t ∈ S.  Then ϕ is isomorphic as an (S, 

S)-bimodule.  Setting h = ϕ(1), we have h(st) = h(ts) for all s, t ∈ S.  As mentioned in Remark 1, we have 
�

i sti ⊗ si =
�

i ti ⊗ si s in 

S ⊗k S, and so, 
�

i β(xsti)si =
�

i β(xti)si s, where β ∈ Hom k(X, k), s ∈ S , x ∈ X .  Hence we have the mapping Tr of Hom k(X, k) to 

Hom(XS, SS) defined by

 
Tr(β)(x)=

�

i

β(xti)si   (β ∈ Hom k(X, k), x ∈ X).

On the other hand, we have the mapping θ of Hom(XS, SS) to Hom k(X, k) defined by

 θ(α) = h◦α (α ∈ Hom(XS, SS)).

Then it is easy to see that θ ◦Tr = I,Tr ◦ θ = I  and that θ is a right R-homomorphism.  Since h(st) = h(ts) for all s, t ∈ S, θ is also a 

left S-homomorphism.  This completes the proof.  

Lemma 3.4  Let P be a right S-module and Q an (S, R)-bimodule.  Then the mapping ν  of Qσ ⊗S σP to P⊗S Q given by 

ν(q⊗ p) = p⊗q may be defined and it is a -homomorphism.  Further, Qσ ⊗S σP has a structure of right R-module given 

by (q⊗ p)r = qr⊗ p for r ∈ R.  Moreover, if σ is an anti k-isomorphism, then ν  is an isomorphism whose inverse is given by 
p⊗q → q⊗ p.

Proof.  The first statement is clear.  Suppose that σ is anti-isomorphic.  Let p ∈ P,q ∈ Q, s ∈ S.  Since σ−1(s) ∗ p = ps,q∗σ−1(s) = sq, 
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we have q⊗ ps = sq⊗ p in Qσ ⊗S σP.  Hence the mapping ν′ of P⊗S Q to Qσ ⊗S σP given by ν′(p⊗q) = q⊗ p may be induced.  It is 

evident that ν and ν′ are mutually inverse isomorphisms.  

Proposition 3.5  Suppose that S is a symmetric k-algebra and that σ is an anti k-isomorphism. Let M and N be (R, S)-bimodules 

such that M � ρN∗σ as (R, S)-bimodules and that N is finitely generated projective as a right S-module.  Let V and W be left 

S-modules such that V � σW∗ as left S-modules.  Then there holds M⊗S V � ρ ((N ⊗S W)∗) as left R-modules.  

Proof.  Using the assumption, we have the following left R-module isomorphisms:

 M⊗S V � ρN∗σ ⊗S σW∗

              � ρHom(NS, SS)σ ⊗S σW∗   (Lemma 3.3)

              � ρ (W∗⊗S Hom(NS, SS))   (Lemma 3.4)

              � ρ ((N ⊗S W)∗)   (Lemma 3.2).

This completes the proof.  

 The following extends Proposition 3.3 of W. Willems and A. Zimmermann [2] slightly.  

Corollary 3.6  Suppose that S is a symmetric k-algebra and that σ is an anti k-isomorphism.  Let M be an (R, S)-bimodule such that 

M � ρM∗σ as (R, S)-bimodules and that M is finitely generated projective as a right S-module.  Let V be a left S-module such that 

V � σV∗ as left S-modules.  Then there holds M⊗S V � ρ ((M⊗S V)∗) as left R-modules.  
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可換環上の対称多元環の双対加群

北　村　　　好

数学分野

要　　旨

　本論文の目的は体上の有限群の群環の双対加群に関するW. WillemsとA. Zimmermannによる最近の結果を可換環
上の多元環の双対加群に拡張することである．彼等は次の事柄を示した：Kを体とする．K[G], K[H]をそれぞれ有限
群G, HのK上の群環とする．Mが自己双対 (K[G], K[H])-両側加群でK[G]-加群として射影的であり，Vが自己双対
K[G]-左加群ならば，M⊗K[G] Vも自己双対K[H]-左加群である．よく知られているように体上の有限群の群環は自己
反同型をもつ対称多元環である．体を可換環に拡張して，可換環上の多元環で自己反同型をもつものを考え以下の
事柄を示す：kを可換環とする．Rをk上の多元環でk-反準同型写像 ρ : R→ R を有し，Sをk上の対称多元環でk-反
同型写像 σ : S → S を有するものとする．M, Nを(R, S)-両側加群でMは(R, S)-加群としてHomk(N, k)に同型であり，N

は右S-加群として有限生成射影的であるとする．V, Wを左S-加群でVは左S-加群としてHomk(W, k)に同型であるとす
る．このとき，M⊗S Vは左R-加群としてHomk(N ⊗ SW, k)に同型である．体Kと有限群G, Hに対して，上記彼等の結果
はk = K,R = K[G],S = K[H], N = M,W = Vについてこの結果を適用すれば直ちにしたがう．

キーワード: 双線型形式，双対加群，対称多元環，反準同型写像
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