

東京学芸大学リポジトリ

Tokyo Gakugei University Repository

東京学芸大学新天体観測システムの性能評価II: 冷却CCDカメラ

メタデータ	言語: Japanese				
	出版者:東京学芸大学教育実践研究推進本部				
	公開日: 2023-12-07				
	キーワード (Ja): 東京学芸大学40c望遠鏡,				
	冷却CCDカメラ, 性能評価				
	キーワード (En): Tokyo Gakugei University 40 cm				
	Telescope, Cooling CCD camera, Performance				
	Evaluations				
	作成者: 大井, 彩香, 富田, 飛翔, 西浦, 慎悟, 土橋, 一仁				
	メールアドレス:				
	所属: 東京学芸大学, 東京学芸大学, 東京学芸大学,				
	東京学芸大学				
URL	http://hdl.handle.net/2309/0002000141				

東京学芸大学新天体観測システムの性能評価Ⅱ.

一 冷却CCDカメラ ——

大井 彩香*1·富田 飛翔*2·西浦 慎悟*3·土橋 一仁*3

宇宙地球科学分野

(2023年5月31日受理)

OI, A., TOMITA, T., NISHIURA, S. and DOBASHI, K.: Performance Evaluations of a New Astronomical Observation System at Tokyo Gakugei University. II.: Cooling CCD Camera. Bull. Tokyo Gakugei Univ. Div. Nat. Sci., **75** : 113–124. (2023) ISSN 2434–9380

Abstract

We report results of performance evaluations of the cooling CCD camera ML8300-GPS installed to an astronomical observation system renovated in March 2020 at the Tokyo Gakugei University.

It is found that 1) at a cooling temperature from -10 to -30 degrees, the KAF-8300 installed to the ML8300-GPS is cooled enough to be used for observation in about 150s from the start of cooling, 2) the dome-flat image at our new observation system matches the twilight-flat image with an accuracy of less than 1%, 3) due to the difference of effective exposure time caused by the shape of the shutter of the ML8300-GPS, dome-flat images with short exposure times tend to show higher count values in the center. The differences of the dome-flat image with exposure time 1 s and that with 2s, 5s, and 10s are about 1.6%-1.7%, and with 20s is about 6%.

Keywords: Tokyo Gakugei University 40 cm Telescope, Cooling CCD camera, Performance Evaluations

Department of Astronomy and Earth Sciences, Tokyo Gakugei University, 4-1-1 Nukuikita-machi, Koganei-shi, Tokyo 184-8501, Japan

要 旨

我々は、2020年3月に更新された東京学芸大学の新天体観測システムについて,主に冷却CCDカメラML8300-GPSの性能評価を行った。

結果は次の通りである。1) ML8300-GPSのCCDチップKAF-8300は、冷却温度-10℃~-30℃において、冷却開始から150秒ほどで観測可能になることが確認された。2)新観測システムのドーム・フラットは1%以下の精度でトワイライト・フラットと一致していることが明らかになった。3) ML8300-GPSのシャッターの形状に起因する有効な露光時間の違いにより、露光時間が短いドーム・フラット画像では画像中央部のカウント値が高くなる。露光時間1秒のドーム・フラット画像と露光時間2秒、5秒、10秒のドーム・フラット画像の違いは1.6%-1.7%程度で、

^{*1} 東京学芸大学教育学部 学校教育系 初等教育教員養成課程 理科選修(184-8501 東京都小金井市貫井北町4-1-1)

^{*2} 東京学芸大学大学院教育学研究科(184-8501 東京都小金井市貫井北町 4-1-1)

^{*3} 東京学芸大学 自然科学系 広域自然科学講座 宇宙地球科学分野 (184-8501 東京都小金井市貫井北町 4-1-1)

露光時間20秒のドーム・フラット画像との違いは約6%となることが判明した。

キーワード:東京学芸大学40c望遠鏡,冷却CCDカメラ,性能評価

1. はじめに

約半世紀前に東京学芸大学中央1号館(旧:自然科 学系研究棟1号館)屋上に設置された三鷹光器製の口 径40cmの赤道儀式カセグレン型反射望遠鏡は、経年 による老朽化などのため、2020年3月に新しい観測 システムに更新された。新しい観測システムは、鏡筒 と主鏡がUK Orion社のODK16(口径40cm, 焦点距離 2720mm, F6.8), 赤道儀がMathis Instruments社のMI-500, 検出器とフィルター・ホイールがFinger Lakes Instrumentation 社の冷却CCDカメラML8300-GPSと CFW1-5, フィルターがAstrodon社のJohnson-Cousins システム (例えば, Bessell, 1990) のB, V, R_c, I_cバ ンドに準拠した広帯域フィルターである(土橋ほか, 2022)。導入後、様々なシステム開発と性能評価が行 われた(川崎ほか, 2021; 富田ほか, 2021; 土橋ほ か、2022; 鈴木、2022; 鈴木ほか、2022; 富田ほか、 2022;饗場, 2023;饗場ほか, 2023;大井, 2023)。

特に冷却CCDカメラML8300-GPSについては, 鈴木(2022)において, CCDチップの冷却時間, ダーク成分の安定性, 応答の線形性, そして, Bフィルターにおけるドーム・フラットの平坦性の調査・報告がなされた。後に, CCDの冷却時間の実験については, データの読み出しを連続的かつ頻繁に行ったことでCCDチップが加熱され過ぎていた可能性があることが判明した。

本稿では、鈴木ほか(2022)に続いて、東京学芸大 学新天体観測システムの冷却CCDカメラML8300-GPSの冷却時間、ドーム・フラット画像の有効性、の 調査結果について報告を行う。

2. ML8300-GPSの冷却時間

2.1 KAF-8300の温度モニター

CCDカメラは、入射した光子によって励起された 電子を信号化し、画像データとして出力する。しかし 実際には、CCDカメラが置かれた環境の熱エネルギー によっても電子は励起され、ダーク成分(暗電流成 分)として画像データ中に記録される。このダーク成 分を軽減するためには、CCDチップ自身を低温に保 つ必要がある。ML8300-GPSに搭載されたCCDチッ プは、ON Semiconductor社のKAF-8300である。KAF-8300は、表面照射型のCCDチップであり、画素サイ ズは5.4 μ m/pix、画素フォーマットは3,326 pix × 2,504 pix (830万画素)である。ML8300-GPSではペル チェ素子を用いて、仕様上、KAF-8300を周辺温度の -55 ℃ まで冷却することが可能である。また、 ML8300-GPSには温度センサーが取り付けられてお り、リアルタイムでKAF-8300の温度をモニターする ことが出来る。しかし、温度センサーが設置された場 所は公開されておらず、また、温度センサーが出力す る温度の値がKAF-8300全体の温度をどの程度反映し ているかは不明である。限られた観測時間内に、効率 的に観測を進めるためには、冷却CCDカメラの冷却 に必要な時間を十分に把握しておく必要がある。

2.2 実験機器,実験及び解析

2022年6月22日,23日,24日に,それぞれ,冷却 温度を-10℃,-30℃,-20℃に設定してML8300-GPS の冷却実験を行った。実験は中央1号館4階の天文学 解析室で行い,ML8300-GPSを直接電源と制御用ノー ト・パソコンに繋いでダーク画像を取得した。いずれ の冷却温度においても、ダーク画像は露光時間20秒 で取得し、その後、40秒のポーズ(何も行わずに40 秒待機すること)を90回繰り返した。また、CCD チップKAF-8300の冷却は5枚目のダーク画像取得後 に開始した。表1に実験の概要を掲げた。

画像解析には、アメリカの国立光学天文台が開発 し、現在は有志によって更新・管理・無料配布が行わ れている FITS 画像解析用ソフトウェア IRAF (= Image Reduction and Analysis Facility)を用いた。

2.3 結果一冷却時間

図1aおよび図2aに,経過時間に対するCCDチッ プ温度とCCDチップ全体の平均のカウント値を示し た。これらの図から,冷却温度-10℃~-30℃におい て,CCDチップの温度とCCDチップ全体の平均のカ ウント値は冷却開始後,急激に低下し,一定値に達し た後はほぼ安定した値を示し続けていることが分か る。続いて図1b,図2bと表2に経過時間760秒まで のCCDチップの温度とCCDチップ全体の平均のカウ ント値を示した。これらの図から,CCDチップの温

実験日	冷却時間	対象	露光時間 ^{注)} ×枚数
2022/06/22	-10°C	ダーク	20秒×90枚
2022/06/23	−30°C	ダーク	20秒×90枚
2022/06/24	-20°C	ダーク	20秒×90枚

表1 冷却時間実験の概要

注)20秒露光の後、40秒の待機時間を設けた。

図1 冷却温度-10℃(黒丸), -20℃(赤丸), -30℃(青丸)における, 経過時間に対するCCDチップKAF-8300の温度。 a) は全実験時間, b) は経過時間760秒までに対するもの。

図2 冷却温度-10℃(黒丸), -20℃(赤丸), -30℃(青丸)における, 経過時間に対するCCDチップKAF-8300全体の カウントの平均値。a)は全実験時間, b)は経過時間760秒までに対するもの。

度は経過時間600秒(冷却開始から350秒)あたりで ほぼ一定値に,そして,全体のカウントの平均値は, 経過時間450秒(冷却開始から200秒)あたりで一定 に達していることが覗える。つまり,明らかに経過時 間に対して,CCDチップの温度と全体のカウントの 平均値は,異なる変化傾向を示している。この冷却開 始後5分ほどの間に,CCDチップ全体が温度一様の 状態になるまで,CCDチップの温度分布は大きく変 化していると考えられる。

そこで、CCDチップの局所的な温度変化を調べる ため、図3の様にCCDチップ上に450 pix × 450 pix となるように領域1~9を設定し、各ダーク画像中 の各領域のカウント値の時間変化を調べた。図4a~ 4cと表2に、冷却温度-10℃、-20℃、-30℃における 各領域のカウントの平均値の時間変化を示した。これ ら3つの図からは、冷却温度-10℃~-30℃において、 経過時間250秒から400秒の間に各領域の平均のカウ ント値がほぼ一定の値に達していることが覗える。ま た冷却は、領域1,2,3,4,5の順、そして、領域 9,8,7,6の順で進んでおり、さらに、領域1と 9,領域2と8、領域4と7、領域5と6の平均のカ ウント値の変化はほぼ同じ傾向を示していることが分 かる。

2. 4 考察一冷却時間

図 4a ~ 4cから, ML8300-GPS に 搭載 された CCD チップKAF-8300の各領域のカウントの平均値は, 冷却 開始から150秒程度でほぼ一定値に達している。この ことからKAF-8300の温度は, 冷却開始後150秒程度で ほぼ一様, かつ, 冷却温度に達していると考えられる。

東京学芸大学紀要 自然科学系 第75集 (2023)

表2 経過時間に対するCCD温度とダークのカウント値

経過 時間	CCD 温度	カウントの平均値 (ADU)									
(秒)	(\mathcal{C})	CCD全体	領域1	領域2	領域3	領域4	領域5	領域6	領域7	領域8	領域9
						冷却温度:-10	C				
0	29.75	2494.14 ± 279.74	2503.18 ± 322.17	2489.77 ± 267.12	2487.93 ± 282.05	2490.05 ± 243.07	2496.38 ± 273.89	2496.16 ± 236.30	2487.05 ± 261.79	2493.36 ± 278.16	2501.54 ± 295.50
63	29.69	2492.18 ± 281.74	2501.32 ± 350.63	2488.03 ± 267.06	2486.20 ± 282.16	2487.87 ± 241.45	2494.29 ± 287.72	2493.49 ± 235.52	2484.94 ± 251.40	2491.47 ± 277.35	2500.22 ± 295.00
125	29.69	2492.31 ± 282.03	2501.37 ± 347.57	2488.32 ± 266.73	2486.18 ± 281.20	2487.99 ± 241.47	2494.19 ± 288.84	2493.43 ± 235.62	2484.99 ± 250.44	2491.86 ± 277.20	2500.32 ± 295.38
188	29.69	2493.19 ± 279.56	2502.33 ± 347.82	2489.09 ± 266.78	2487.26 ± 279.93	2488.95 ± 242.14	2495.03 ± 289.38	2494.44 ± 235.98	2486.01 ± 259.41	2492.68 ± 277.64	2501.19 ± 295.31
250	29.75	2494.85 ± 278.49	2504.46 ± 350.34	2490.86 ± 267.09	2488.91 ± 280.36	2490.29 ± 242.50	2496.80 ± 289.33	2496.60 ± 238.83	2487.37 ± 261.85	2494.43 ± 277.11	2502.61 ± 295.40
313	29.69	2359.54 ± 220.69	2287.24 ± 235.72	2316.49 ± 226.18	2354.09 ± 224.66	2395.19 ± 171.51	2441.17 ± 199.50	2441.00 ± 200.02	2392.63 ± 212.44	2319.30 ± 211.00	2287.34 ± 256.13
375	0.44	2213.37 ± 75.24	2213.02 ± 54.23	2210.36 ± 78.92	2211.13 ± 107.60	2213.09 ± 40.11	2217.10 ± 39.06	2215.74 ± 132.33	2210.69 ± 38.06	2212.57 ± 44.87	2215.99 ± 133.48
438	-7.00	2212.87 ± 62.32	2212.92 ± 36.79	2210.19 ± 59.91	2210.56 ± 65.40	2212.47 ± 31.64	2216.00 ± 38.52	2214.46 ± 128.96	2210.16 ± 29.48	2212.50 ± 32.20	2215.94 ± 95.16
500	-9.25	2212.64 ± 59.39	2213.02 ± 33.70	2209.99 ± 55.71	2210.41 ± 56.21	2212.21 ± 30.05	2215.21 ± 28.97	2213.87 ± 128.61	2209.78 ± 28.18	2212.30 ± 29.98	2216.07 ± 87.17
563	-10.00	2212.01 ± 58.61	2212.24 ± 33.04	2209.30 ± 54.07	2209.92 ± 54.13	2211.46 ± 29.58	2214.85 ± 28.84	2213.44 ± 128.59	2209.24 ± 27.86	2211.59 ± 29.54	2215.16 ± 84.23
625	-10.06	2211.86 ± 58.64	2212.25 ± 33.19	2209.44 ± 54.56	2209.75 ± 54.87	2211.25 ± 29.70	2214.57 ± 28.72	2213.11 ± 128.57	2208.91 ± 27.84	2211.60 ± 29.54	2215.32 ± 84.09
688	-10.06	2211.99 ± 58.51	2212.33 ± 32.86	2209.67 ± 54.13	2209.69 ± 54.02	2211.41 ± 29.32	2214.69 ± 28.73	2213.19 ± 128.57	2209.04 ± 28.03	2211.75 ± 29.71	2215.49 ± 84.27
						冷却温度:-20	C				
0	29.13	2467.66 ± 273.71	2475.94 ± 336.64	2463.44 ± 263.18	2461.98 ± 272.26	2463.91 ± 232.54	2469.89 ± 281.12	2469.16 ± 230.21	2460.68 ± 235.35	2466.92 ± 273.64	2475.11 ± 289.71
63	29.25	2471.66 ± 274.64	2480.32 ± 343.96	2467.72 ± 263.84	2466.07 ± 273.66	2467.49 ± 234.15	2473.49 ± 283.33	2472.82 ± 231.55	2464.33 ± 236.69	2471.31 ± 275.80	2479.39 ± 291.30
126	29.25	2472.55 ± 273.65	2481.52 ± 342.17	2468.38 ± 263.78	2466.80 ± 274.90	2468.44 ± 234.37	2474.53 ± 283.12	2474.43 ± 234.16	2465.59 ± 258.84	2471.90 ± 276.76	2479.89 ± 291.11
188	29.19	2471.73 ± 273.01	2480.23 ± 316.12	2467.48 ± 263.54	2465.83 ± 273.72	2467.85 ± 234.25	2473.96 ± 282.56	2473.12 ± 231.14	2464.58 ± 258.56	2471.02 ± 274.75	2479.33 ± 290.59
251	29.19	2473.32 ± 275.56	2482.10 ± 345.10	2469.43 ± 263.75	2467.47 ± 275.89	2469.09 ± 233.43	2475.09 ± 263.12	2474.46 ± 230.57	2466.18 ± 258.43	2473.13 ± 275.26	2480.92 ± 290.57
313	29.25	2348.24 ± 215.67	2280.04 ± 227.41	2307.47 ± 222.25	2343.24 ± 218.81	2381.89 ± 165.18	2425.13 ± 194.47	2425.00 ± 197.75	2378.98 ± 206.18	2310.46 ± 205.32	2280.51 ± 253.33
376	-6.19	2216.50 ± 61.77	2216.20 ± 35.58	2213.59 ± 57.88	2214.32 ± 63.88	2216.11 ± 30.90	2219.84 ± 29.98	2218.58 ± 128.52	2213.79 ± 28.33	2215.89 ± 31.02	2219.26 ± 89.27
438	-15.56	2218.26 ± 51.90	2218.34 ± 27.62	2215.84 ± 43.41	2215.86 ± 36.78	2217.85 ± 26.53	2221.19 ± 27.75	2219.77 ± 128.30	2215.56 ± 25.62	2218.05 ± 26.18	2221.16 ± 60.66
501	-18.88	2218.56 ± 49.77	2218.99 ± 26.43	2216.04 ± 39.31	2216.36 ± 32.68	2217.81 ± 25.77	2221.11 ± 25.91	2219.97 ± 128.53	2215.66 ± 25.26	2218.28 ± 25.44	2221.84 ± 53.65
563	-19.94	2218.37 ± 49.23	2218.85 ± 27.32	2216.00 ± 38.45	2216.21 ± 31.66	2217.85 ± 25.68	2220.83 ± 25.58	2219.70 ± 128.43	2215.51 ± 25.10	2218.16 ± 25.44	2221.53 ± 51.25
626	-20.06	2218.71 ± 49.13	2219.28 ± 26.11	2216.27 ± 38.94	2216.67 ± 31.32	2218.23 ± 25.50	2221.05 ± 25.58	2220.02 ± 128.58	2216.17 ± 25.09	2218.29 ± 25.36	2221.83 ± 50.65
688	-20.06	2218.90 ± 49.17	2219.47 ± 26.22	2216.56 ± 38.31	2216.70 ± 31.50	2218.17 ± 25.63	2221.29 ± 25.67	2220.16 ± 128.29	2216.01 ± 25.16	2218.74 ± 25.42	2222.31 ± 51.09
						冷却温度:-30	C				
0	29.19	2471.18 ± 272.58	2478.66 ± 318.19	2466.65 ± 264.46	2465.15 ± 273.49	2467.78 ± 234.54	2474.30 ± 282.58	2473.61 ± 231.22	2464.66 ± 257.58	2470.08 ± 275.15	2477.71 ± 291.88
63	29.13	2467.09 ± 272.38	2475.15 ± 318.00	2462.96 ± 263.63	2461.17 ± 273.03	2463.20 ± 232.91	2469.66 ± 281.21	2468.83 ± 231.19	2460.39 ± 257.02	2466.20 ± 273.55	2474.22 ± 290.59
125	29.06	2465.64 ± 272.34	2474.04 ± 343.90	2461.48 ± 263.65	2459.86 ± 272.20	2461.72 ± 233.07	2467.90 ± 279.40	2467.21 ± 230.95	2458.65 ± 256.04	2464.95 ± 272.44	2472.91 ± 290.03
188	29.13	2467.42 ± 272.68	2476.02 ± 337.63	2463.59 ± 263.21	2461.56 ± 272.49	2463.29 ± 233.25	2469.20 ± 266.31	2468.62 ± 231.22	2460.06 ± 234.48	2467.14 ± 273.12	2475.30 ± 289.94
250	29.19	2470.43 ± 275.48	2478.99 ± 339.30	2466.42 ± 263.88	2464.63 ± 273.75	2466.32 ± 234.27	2472.34 ± 262.87	2471.73 ± 231.77	2463.41 ± 257.23	2469.78 ± 274.02	2478.14 ± 291.20
313	29.25	2347.37 ± 213.68	2279.40 ± 228.38	2306.84 ± 222.33	2342.30 ± 219.75	2380.77 ± 166.55	2424.14 ± 159.31	2424.05 ± 198.10	2377.99 ± 206.99	2309.46 ± 205.27	2279.74 ± 254.19
375	-7.31	2218.12 ± 57.32	2217.79 ± 31.61	2215.07 ± 51.69	2216.03 ± 47.56	2218.05 ± 28.94	2221.52 ± 27.16	2220.21 ± 128.92	2215.75 ± 27.08	2217.44 ± 28.45	2220.74 ± 80.51
437	-23.94	2222.78 ± 46.57	2222.68 ± 25.33	2220.13 ± 33.59	2220.52 ± 26.79	2222.45 ± 25.01	2225.76 ± 25.22	2224.50 ± 129.17	2220.50 ± 24.88	2222.21 ± 24.95	2225.45 ± 40.51
500	-28.31	2223.25 ± 45.45	2223.55 ± 24.98	2220.31 ± 31.30	2221.03 ± 25.66	2222.92 ± 24.95	2225.99 ± 25.05	2224.95 ± 129.78	2220.91 ± 24.70	2222.56 ± 24.87	2226.07 ± 34.76
563	-29.75	2223.52 ± 45.15	2223.81 ± 24.97	2220.88 ± 30.33	2221.44 ± 25.43	2223.00 ± 24.88	2225.89 ± 24.98	2224.94 ± 129.42	2221.01 ± 24.67	2223.12 ± 26.77	2226.56 ± 33.76
625	-30.06	2222.32 ± 45.09	2222.58 ± 24.95	2219.94 ± 30.06	2220.15 ± 25.49	2221.71 ± 24.94	2224.79 ± 25.00	2223.90 ± 129.40	2219.71 ± 24.72	2222.00 ± 24.80	2225.16 ± 32.75
688	-30.06	2222.40 ± 45.11	2222.94 ± 24.89	2219.79 ± 30.16	2220.12 ± 25.42	2221.90 ± 24.90	2224.99 ± 25.00	2224.03 ± 129.50	2219.85 ± 24.82	2221.89 ± 24.81	2225.59 ± 33.31

 図4 経過時間に対する領域1(黒丸+黒実線),2(赤丸+ 赤実線),3(青丸+青実線),4(橙丸+橙実線),5(緑 丸+緑実線),6(緑×印+緑破線),7(橙×印+橙破線),
 8(赤×印+赤破線),9(黒×印+黒破線)のカウントの 平均値。冷却温度はa)-10℃,b)-20℃,c)-30℃。

また,各領域のカウントの平均値の時間変化から, KAF-8300の冷却は,図3のY軸の正の方向に進み, 平均カウント値の変化の対称性からこの冷却は,図3 のX軸方向の座標にはほぼ依存しないことが明らかに なった。

3. ドーム・フラットの有効性

3.1 CCD画像の感度むら補正

一般にCCDの画素(ピクセル)には感度むらが存 在する。この感度むらを補正するために、天体画像の 他にフラットと呼ばれる画像を取得する。フラットは 一様光を撮影した画像であり、日の出直前や日没直後 の薄明の空を撮影したトワイライト・フラットを使用 することが理想とされるが、実際の薄明時には空の明 るさが刻々と変化すること、星などの天体が写ってし まう可能性があること、波長帯にもよるがトワイライ ト・フラットを取得できる時間帯が30分程度に限ら れていること、そして、快晴でなければならないこ と、などから観測の度にトワイライト・フラットを撮 影することは現実的ではない。そこで大抵の場合, ドーム内に白色スクリーンを設置し、これを人工光で 照らして撮影するドーム・フラットをトワイライト・ フラットの代わりに使用して感度むらの補正を行う。 しかしながら、人工光に照らされた白色スクリーンが 一様の輝度分布になっているとは限らない。そこで本 研究では、ドーム・フラットの画像とトワイライト・ フラットの画像を比較することによって、本観測シス テムにおけるドーム・フラットの有効性を確認した。

実験日 冷却温度	対象注	バンド	(露光時間)×枚数
2022/11/11	TF	V	8s×5枚,11s×6枚
-10°C	DF	V	21s×10枚
	DK	_	(8s, 11s, 21s) ×10枚
2022/12/08	DF	R_c	7s imes 10枚
-10°C	TF	R_c	$7s \times 2$ 枚, (8s, 8.5s, 12s) ×1枚, 20s ×3枚, 30s × 2枚
	DK	-	(7s, 8s, 8.5s, 12s, 20s, 30s) ×10枚
2023/01/10	TF	I_c	$7s \times 5$ 枚, (9s, 15s, 25s) ×1枚, 35s × 2枚, (40s, 60s, 120s) ×1枚
-10°C	DF	I_c	9s imes 10枚
	DK	_	(7s, 9s, 15s, 25s, 35s, 40s, 60s, 120s) ×10枚
2023/02/21	DF	В	170s×10枚
-10°C	TF	В	(8s, 10s, 12s) ×1枚, $15s$ ×2枚, $20s$ ×1枚, $(30s, 45s)$ ×2枚, $60s$ ×1枚
	DK	_	(8s, 10s, 12s, 15s, 20s, 30s, 45s, 60s) ×10枚

表3 フラット観測の概要

注) TF=トワイライト・フラット, DF=ドーム・フラット, DK=ダーク

3.2 観測機器,観測及び解析

2022年11月11日と12月8日の夕方にV及びR_cバ ンド,2023年1月10日と2月21日の夕方にIc及びB バンドでトワイライト・フラットとドーム・フラット の観測を行った。冷却CCDカメラML8300-GPSを、 フィルター・ホイールCFW1-5を介して鏡筒ODK16 に接続した。ML8300-GPSの冷却温度は-10℃に設定 し、快晴時の高度45度の東の空に望遠鏡を向けて適 宜露光時間を変えながらトワイライト・フラットを撮 影した。また、同じ日にドーム・フラット10枚を取 得した。ドーム・フラットは2つの100W白熱電球の 間接照明によって照らしたドーム内の白色スクリーン (鈴木ほか, 2022)を撮影することで取得した。さら に、トワイライト・フラットおよびドーム・フラット と同じ露光時間のダーク画像を露光時間毎に10枚ず つ取得した。なお、トワイライト・フラット取得時の 天候は快晴であった。表3に観測の概要を示した。

画像解析にはIRAFを用いて,露光時間毎のダーク 画像の合成とフラット画像からのダーク画像の差し引 き,フィルター毎のフラット画像の合成・規格化,を 行った。なお,合成後のトワイライト・フラット画像 と合成後のドーム・フラット画像のS/Nを同程度にす るため,両者の合成前のカウント値の合計が300,000 ~350,000 ADU程度となるように,合成する画像の数 を調整した。ドーム・フラットとトワイライト・フ ラットの合成後,フィルター毎にドーム・フラット画 像をトワイライト・フラット画像で除算した。図5a, 5bに合成・規格化したBバンドのドーム・フラット 画像とトワイライト・フラット画像,図5cにBバンドのドーム・フラット画像をトワイライト・フラット画像で割った画像を示した。同様に,図 $6a \sim 6c$ にはVバンド,図 $7a \sim 7c$ には R_c バンド,図 $8a \sim 8c$ には I_c バンドの画像を掲げた。

3.3 結果-ドーム・フラットとトワイライト・フ ラット

図5c, 6c, 7c, 8cの全てにおいて, 画像中央部 が暗く, 外側の領域が明るくなる傾向が見られた。こ れは, 使用したフィルターに依らず, 画像中心部では トワイライト・フラットに比べてドーム・フラットの 方が暗く, 反対に外側の領域ではドーム・フラットの 方が明るくなっていることを示している。

トワイライト・フラットに対するドーム・フラット の輝度分布を調べるため, Bバンドについては, 図 5cの画像の中央を通る水平軸と垂直軸に沿ったカウ ントの分布を図5dと5eにそれぞれ示した。同様にV バンドについては図6d, 6eに, R_cバンドについては 図7d, 7eに, I_cバンドについては図8d, 8eにそれ ぞれ示した。これらの図は, いずれのフィルター・バ ンドにおいても, 最大でも数%程度画像中央部で ドーム・フラットが暗く, 外側の領域では反対に明る くなっていることを示している。

図5 Bバンドのa) ドーム・フラット画像, b) トワイライト・フラット画像, c) ドーム・フラットをトワイライト・フ ラットで除した画像, d) c) 画像の中心を通る水平軸に沿ったカウント分布, e) c) 画像の中心を通る垂直軸に沿った カウント分布。

図6 図5に同じ。ただし、フィルターはVバンド。

3.4 考察-ドーム・フラットとトワイライト・フ ラット

ドーム・フラットとトワイライト・フラットの比較 より,観測波長に依らず,画像中央部でドーム・フ ラットが暗く,反対に外側ではドーム・フラットが明 るくなっていること,そして,この輝度の違いは,水 平・垂直方向のカウント値の分布から,最大で数% 程度になることが考えられる。

図 5c, 6c, 7c, 8cの各画像に対して, IRAFを用 いて画像全体のカウント値の統計量を測定すると, B

図7 図5に同じ。ただし、フィルターは*R*_cバンド。

バンドで,平均値1.000,中央値0.9996,標準偏差 7.244×10⁻³,Vバンドで平均値1.000,中央値0.9999, 標準偏差6.873×10⁻³, *R*_cバンドで平均1.000,中央値 1.000,標準偏差7.079×10⁻³,*I*_cバンドで平均1.000, 中央値1.000,標準偏差5.699×10⁻³,が得られた。こ れら統計量を表4にまとめた。

カウントの平均値に対する標準偏差は, Bバンドで 0.72%, Vバンドで0.69%, R_cバンドで0.71%, I_cバ ンドで0.57%となる。これは,フラット画像中央部 と外側領域の輝度の違いが,実際には,せいぜい1% 大井,他:東京学芸大学新天体観測システムの性能評価 II.

表4 トワイライト・フラットに対するドーム・フラットの統計量

バンド	平均值	中央值	標準偏差
В	1.000	0.9996	7.244×10^{-3}
V	1.000	0.9999	6.873×10^{-3}
R_c	1.000	1.000	7.079×10^{-3}
I_c	1.000	1.000	5.699×10^{-3}

表5 露光時間とフラットに関する観測の概要

実験日 冷却温度	対象注	バンド	(露光時間) ×枚数
2023/05/02	DK	V	$(1s, 2s, 5s, 10s, 20s) \times 10$ 枚
-10°C	DF	V	$1s \times 20$ 枚, $2s \times 10$ 枚, $5s \times 4$ 枚, $10s \times 2$ 枚, $20s \times 1$ 枚

注) DF= ドーム・フラット, DK= ダーク

N o

a)

c)

図9 露光時間がa)1秒,b)2秒,c)5秒,d)10秒,e)20秒のVバンドのドーム・フラット。

程度以下であることを示唆している。鈴木(2022)で は、Bバンドのみではあるが、冷却時間-20℃という 条件下で同様の観測が行われている。本研究で見出さ れたドーム・フラットとトワイライト・フラットにお ける画像中央部と外側領域での輝度の違いは、鈴木 (2022)においても確認されており、平均値1.002、標 準偏差6.738×10⁻³が報告されている。この値は本研 究で得られた結果と矛盾しない。

この1%という精度は、一般的に比較的容易に達成 可能なフラットの精度と言われており、本学の新天体 観測システムにおけるドーム・フラットは、一般的な 精度には十分に達していると考えて良い。

4. 露光時間のフラット画像への影響

4. 1 CCDチップに対する有効な露光時間

ML8300-GPSのシャッターは、複数の羽根状部品が 組み合わされ、露光時にはこれらが中央から外に向け て開く形式である。シャッターの開閉時間は有限であ るため、有効な露光時間はCCDチップの外側の領域 に比べて中央部分で長くなる。つまり、一様光に対す る応答は、画像の外側の領域に対して中央部分でカウ ント値が高くなる。この有効な露光時間の違いは、露 光時間が短い場合ほど大きく影響する。これと同じ現 象は、本学の旧観測システムで導入されていた CCD

図10 露光時間1秒のドーム・フラットを,露光時間a)2秒,b)5秒,c)10秒,d)20秒のドーム・フラットで除した画像。

平均值	中央値	標準偏差					
1.000	0.9999	1.692×10^{-2}					
1.000	1.000	1.658×10^{-2}					
1.000	0.9999	1.609×10^{-2}					
1.000	0.9999	$5.965 imes 10^{-2}$					
	平均值 1.000 1.000 1.000 1.000 1.000	平均值 中央値 1.000 0.9999 1.000 1.000 1.000 0.9999 1.000 0.9999 1.000 0.9999 1.000 0.9999					

表6 露光時間とフラットに関する統計量

注) 例えば、この列の表記「1s/2s」は露光時間1sのドーム・フラット画像を2sの ドーム・フラット画像で除した画像であることを示す。

カメラ武藤工業製CV-04においても報告されている (小熊・水野, 1999)。

4.2 観測機器,観測及び解析

前章同様の観測器機を使用し, ML8300-GPSの冷却 温度は-10℃とした。

観測は、2023年05月02日に、Vバンドのドーム・ フラットを、露光時間1秒で20枚、露光時間2秒、5 秒、10秒、20秒でそれぞれ10枚、4枚、2枚、1枚 取得した。また、同じ露光時間のダーク画像を10枚 ずつ取得した。観測の概要を表5に示した。

画像解析にはIRAFを用いて,露光時間毎のダーク 画像の合成,ドーム・フラット画像からのダーク画像 の差し引き,露光時間毎のドーム・フラット合成・規 格化を行った。図 9a-9eに,合成・規格化後の露光時 間1秒,2秒,5秒,10秒,20秒のVバンドのドー ム・フラット画像を掲げた。また,露光時間1秒の ドーム・フラット画像を,露光時間2秒,5秒,10 秒,20秒のドーム・フラットで除した画像を図 10a-10dに示した。そして,IRAFを用いて測定した図 10a-10dの画像の統計量を表6にまとめた。

4.3 結果-露光時間とドーム・フラット

図10a-10dの全てで中央部分が明るく,外側の領域 が暗い画像が得られた。特に明るい領域はCCDチッ プの中央で五角形もしくは星型になっており,中央か ら外側へ向かって開くシャッターの形状を反映してい る。表6からは,露光時間1秒と露光時間2秒,5秒, 10秒のドーム・フラット画像の間の輝度の違いは, 1.6-1.7%程度であるが,露光時間が20秒のドーム・ フラットに対しては約6%となる。

4. 4 考察-露光時間とドーム・フラット

ML8300-GPSのシャッターの形状・特徴から、CCD

チップの中央部分の画素では有効な露光時間が長くな り、反対に外側の領域の画素ではこれが短くなること が確認された。有効な露光時間が長い領域は、CCD チップの中央部分の星形の領域であり、露光時間1秒 に対して、10秒程度までのカウント値の違いは1.6-1.7%程度、露光時間が20秒になると約6%にもなる。

前章のフラット画像とは集めた光子の量(つまりカ ウント値の総計)が異なるため、直接比較することは 出来ないが、ドーム・フラットに対してトワイライ ト・フラットの方で露光時間が短くなる傾向があるた め、有効な露光時間の違いが、ドーム・フラット画像 とトワイライト・フラット画像の違いを生み出してい る可能性がある。

また,有効な露光時間の違いの影響は,露光時間が 長くなるほど小さくなるため,露光時間を長くするこ とでこの影響を軽減することができるだろう。

5. まとめ

2020年に本学に導入された,新天体観測システム の冷却CCDカメラML8300-GPSを中心に冷却時間, ドーム・フラットの妥当性,露光時間のフラット画像 への影響,について性能評価を行った。

ML8300-GPSのCCDチップKAF-8300は、ピクセル 座標のY軸の正の方向に向けて冷却が進み、X軸方向 では大きな冷却時間の違いはないことが判明した。ま た、冷却温度-10℃~-30℃では、冷却開始から150 秒程度でダーク成分のカウント値がほぼ一定値に達し ていることが確認できた。外部温度の高さの影響は未 調査であるが、CCDのチップ温度やダーク成分のカ ウント値の急激な減少速度を考慮すれば、ML8300-GPSは冷却開始後10分程度で十分かつ一様に冷却さ れ、観測可能になると考えられる。

ドーム・フラットとトワイライト・フラットの違い については、B、V、R_c、I_cバンドにおいて、それぞ れ、0.72%、0.69%、0.71%、0.57%であり、このこと から、ドーム・フラットは、1%以下の精度でトワイ ライト・フラットの代用として妥当であることが確認 できた。なお、1%以下のレベルではあるが、画像中 央部分ではトワイライト・フラットが、画像の外側の 領域ではドーム・フラットの方が明るくなる傾向が見 出された。

また,ML8300-GPSのシャッター形状に起因して, CCDチップの中央部分では有効な露光時間が相対的に 長く,外側領域では反対に短くなることが分かった。 これによって,一様光を撮影した場合であっても,露 光時間が短い場合ほど,相対的に画像中央部分では受 け取る光子数が多く,反対に外側の領域では少なくな る。Vバンドのドーム・フラットでは,露光時間1秒 と露光時間2秒,5秒,10秒の違いは1.6-1.7%,露光 時間20秒では約6%にもなる。ドーム・フラットとス カイ・フラットのパターンの僅かな違いは,これに起 因している可能性がある。なお,この影響は露光時間 を長く設定することで軽減することが可能であると考 えられる。

本研究を遂行するにあたって、ドーム・フラット用 スクリーンとライトの設置については田中光化学工業 株式会社の田中一幸氏,本学自然科学系基礎自然科学 講座物理科学分野の荒川悦雄教授から多大な協力や助 言を頂きました。また、研究室の堀口智史氏、下村和 氏,鈴木海哉氏には観測・データ解析の際に支援・協 力を頂きました。皆様に深く感謝致します。本稿の執 筆・出版に関して、カシオ科学財団研究助成(令和3 年度:代表者 土橋一仁),放送大学教育振興会助成金 (2021·2022 年度:代表者 土橋一仁), 栢森情報科学 振興財団研究助成(令和3年度:代表者土橋一仁), 東京学芸大学連合大学院 広域科学教育学研究経費 (令和3·4年度:代表者土橋一仁),村田学術振興財 団研究助成(2022年度:代表者土橋一仁),科学研究 費補助金(20K03226:代表者伊藤信成, 22K18618: 代表者土橋一仁,22K02966:下井倉ともみ, 22K18583:西浦慎悟)の支援を受けました。心から 感謝致します。

参考文献

- 饗場智(2023), "東京学芸大学の40cm望遠鏡のシステム変換 式の構築", 2022年度東京学芸大学教育学部卒業論文.
- 饗場智・土橋一仁・富田飛翔・西浦慎悟・下井倉ともみ(2023), "東京学芸大学40cm望遠鏡のシステム変換式の構築",東京 学芸大学紀要自然科学系,第75集, pp.97-104.
- Bessell, M. S. (1990), "UBVRI passbands", Publications of the Astronomical Society of the Pacific, 102, pp.1181-1199.
- 土橋一仁・西浦慎悟・川﨑優太・富田飛翔(2022),"東京学 芸大学新40cm望遠鏡の特徴と基本性能",東京学芸大学 紀要自然科学系,第74集,pp.77-84.
- 川崎優太・土橋一仁・西浦慎悟・富田飛翔(2021),"東京学 芸大学の新40cm鏡と制御システムの開発1",日本天文 学会2021年春季年会集録,Y10b.
- 小熊隆一・水野孝雄(1999), "市販CCDカメラの試験的導入 とその性能評価",東京学芸大学紀要4部門,第51集,

pp.57-65.

- 大井彩香(2023), "東京学芸大学40cm望遠鏡とCCDカメラの性能評価", 2022年度東京学芸大学教育学部卒業論文.
- 鈴木海哉(2022), "東京学芸大学新天体観測システムのCCD カメラの性能評価", 2021年度東京学芸大学教育学部卒 業論文.
- 鈴木海哉・富田飛翔・西浦慎悟・土橋一仁(2022), "東京学 芸大学新天体観測システムの性能評価:広帯域フィル ターと冷却CCDカメラ",東京学芸大学紀要自然科学系, 第74集, pp.67-75.
- 富田飛翔・土橋一仁・川崎優太・西浦慎悟(2022), "東京学 芸大学40cm望遠鏡の観測システムの開発",東京学芸大
 学紀要自然科学系,第74集, pp.85-93.
- 富田飛翔・土橋一仁・西浦慎悟・鈴木海哉・芹沢来渡
 (2021),"東京学芸大学の新40cm鏡と制御システムの開発3",日本天文学会2021年秋季年会集録,Y11c.