

東京学芸大学リポジトリ

Tokyo Gakugei University Repository

連続写像と線形順序空間

メタデータ	言語: en
	出版者:東京学芸大学教育実践研究推進本部
	公開日: 2023-11-10
	キーワード (Ja):
	キーワード (En):
	作成者: 田中, 祥雄
	メールアドレス:
	所属: Tokyo Gakugei University
URL	http://hdl.handle.net/2309/0002000130

Continuous maps and linearly ordered spaces

Yoshio TANAKA*

Department of Mathematics

(Received for Publication; May 31, 2023)

TANAKA, Y.: Continuous maps and linearly ordered spaces. Bull. Tokyo Gakugei Univ. Div. Nat. Sci., **75** : 1–9 (2023) ISSN 2434-9380

Abstract

For spaces X and Y, let $f: X \to Y$ be a map, and $A \subset X$. Define $f|A: A \to Y$ by (f|A)(x) = f(x), and $f^*: X \to f(X)$ by $f^*(x) = f(x)$.

Ordinarily, we assume that A is a subspace of X, and so is f(X) of Y. Thus, if f is continuous, then so are f|A and f^* On the other hand, for a subset A of a linearly ordered space (abbreviated LOTS) (Z, \leq) , the subspace topology (relative topology) on A need not coincide with the order topology induced by the restriction of \leq . For LOTS X and Y, we shall consider the continuity of f, f|A, or f^* in terms of the two topologies on $A \subset X$ or f(x).

Keywords: continuous map, linearly ordered space, subspace, monotone map, homeomorphism, connected set

Department of Mathematics, Tokyo Gakugei University, 4-1-1 Nukuikita-machi, Koganei-shi, Tokyo 184-8501, Japan

1. Preliminaries

A couple (X, \mathcal{T}) (or (X, \mathcal{T}_X)) means a space with a topology \mathcal{T} , but we use the symbol X as a space if we need not specify \mathcal{T} explicitly.

For (X, \mathcal{T}) and $A \subset X$, A is open (resp. closed) in X if $A \in \mathcal{T}$ (resp. $X \setminus A \in \mathcal{T}$). An open set in X containing $x \in X$ is denoted by a *nbd* V(x).

A subset A of (X, \mathcal{T}) is a subspace of X if it has the subspace topology (relative topology, or induced topology) $A \cap \mathcal{T} (= \{A \cap U \mid U \in \mathcal{T}\}).$

Let $X = (X, \leq)$ be a (linearly) ordered set (with at least two points). For $a, b \in X$ with a < b, let $(a, b) = \{x \in X \mid a < x < b\}$, $[a, b] = \{x \in X \mid a \leq x \leq b\}$, $(a, +\infty) = \{x \in X \mid a < x\}$, and $(-\infty, a) = \{x \in X \mid x < a\}$, etc.

Let $X = (X, \leq)$ be a space having the subbase $\{(a, +\infty), (-\infty, a) \mid a \in X\}$. Then X is called a *linearly ordered*

^{*} Tokyo Gakugei University (4–1–1 Nukuikita-machi, Koganei-shi, Tokyo 184–8501, Japan)

(topological) space, abbreviated LOTS, and the topology on X called the *order topology* (or *interval topology*) induced by \leq . For these, see [2, 6] (or [3], etc.).

Every LOTS is a Hausdorff space; actually a (hereditarily) normal space (as is well-known). The symbol \mathbb{R} (resp. \mathbb{Q} ; \mathbb{Z}) is the space of real numbers (rationals; integers) with the usual (order) topology.

Notation: A couple (X, \leq) means a LOTS with the order topology induced by \leq , and the topology is denoted by $\mathcal{T}(\leq)$. For a subset *A* of (X, \leq) , we assume that *A* has the order denoted by \leq_A , which is the restriction of \leq to *A*. The symbol $A \subset (X, \leq)$ means that *A* has the order topology $\mathcal{T}(\leq_A)$, unless otherwise stated.

Let *A* be a non-empty subset of (X, \mathcal{T}) . Then *A* is *connected in X* if it can not be represented as the union of two nonempty disjoint sets in $A \cap \mathcal{T}$. *A* is *compact in X* if each cover of *A* by sets in $A \cap \mathcal{T}$ contains a finite subcover.

A non-empty subset A of (X, \leq) is *convex* in X if for any $a, b \in A$ with $a \leq b$, $[a, b] \subset A$.

The following basic lemma is well-known ([2, 3, 6, 11], etc.).

Lemma 1. 1. For $X = (X, \leq)$ and $A \subset X$, the following hold.

(1) X is connected iff X has no jumps and no gaps (in the sense of Dedekind cut). Thus, (i) if A is connected in X, then A is convex in X, and (ii) if X is connected, then any convex set in X is connected in X.

(2) X is compact iff it has no gaps, and X has a minimal point and a maximal point.

For a subset A of (X, \mathcal{T}) , A is *dense* in X if $V \cap A \neq \emptyset$ for any non-empty set $V \in \mathcal{T}$. For a subset A of (X, \leq) , let us call A *dense-order* in X (i.e., dense in X in the sense of order ([2])), if for each x < y in X, there exists $z \in A$ with x < z < y. Every dense-order set in (X, \leq) is dense in X.

For $A \subset (X, \leq)$, obviously $\mathcal{T}(\leq_A) \subset A \cap \mathcal{T}(\leq)$, but the two topologies on A need not be the same, even if A is closed and open in X; A is dense in X; or A is itself a connected, compact LOTS (cf. [9], or see Example 3.2(1) later). But, we have the following, as is well-known ([2, 3, 6, 11], etc.).

Lemma 1. 2. Suppose that $A \subset (X, \leq)$ is connected; compact; convex; or dense-order in X. Then A is a subspace of X (equivalently, $A \cap \mathcal{T}(\leq) \subset \mathcal{T}(\leq_A)$).

Notation: For sets X and Y, let $f: X \to Y$ be a map. For $A \subset X$, the symbol f|A means a map from A into Y by (f|A)(x) = f(x) (restriction of domain).

The symbol f^* means a map from X onto f(X) by $f^*(x) = f(x)$ (restriction of range).

Let $X = (X, \mathcal{T}_X)$ and $Y = (Y, \mathcal{T}_Y)$. Let $f : X \to Y$ be a map. Then f is *continuous* if $f^{-1}(\mathcal{T}_Y) \subset \mathcal{T}_X$, here $f^{-1}(\mathcal{T}_Y) = \{f^{-1}(V) | V \in \mathcal{T}_Y\}$; equivalently, for each $x \in X$ and each nbd W(f(x)) in Y, there exists a nbd V(x) in X with $f(V(x)) \subset W(f(x))$.

For $A \subset X$, and $f(X) \subset Y$, ordinarily we assume that A is a subspace of X, and f(X) is a subspace of Y; see [1, 2], and other reference books. Then, for f being continuous, f|A and f^* are continuous. However, for $X = (X, \leq)$ (resp. $Y = (Y, \leq)$), the subspace topology on the subset A of X (resp. f(X) of Y) need not coincide with the order topology $\mathcal{T}(\leq_A)$ (resp. $\mathcal{T}(\leq_{f(X)})$).

In this paper, for a map $f: (X, \leq) \to (Y, \leq)$ with $A \subset X$, we assume that $A \subset (X, \leq)$ with the topology $\mathcal{T}(\leq_A)$, and

 $f(X) \subset (Y, \leq)$ with the topology $\mathcal{T}(\leq_{f(X)})$, unless otherwise stated.

2. Results

The following is elementary, but assume that the subset A of X (resp. f(X) of Y) has the topology \mathcal{T}_A (resp. $\mathcal{T}_{f(X)}$), which is not necessarily a subspace topology.

Lemma 2.1. For a map $f : (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$, the following hold.

(1) For $A \subset X$, let $\mathcal{T}_X \cap A \subset \mathcal{T}_A$. If f is continuous, then so is $f|A : A \to Y$. In particular, for a subspace A of X, if f is continuous, then so is f|A. (2) (i) For $\mathcal{T}_{f(X)} \subset f(X) \cap \mathcal{T}_Y$, if f is continuous, then so is $f^* : X \to f(X)$. (ii) For $f(X) \cap \mathcal{T}_Y \subset \mathcal{T}_{f(X)}$, if f^* is continuous, then so is f.

In particular, for a subspace f(X) of Y, f is continuous iff so is f^* .

Proof. For (1), since $f^{-1}(\mathcal{T}_Y) \subset \mathcal{T}_X$, $f^{-1}(\mathcal{T}_Y) \cap A \subset \mathcal{T}_A$ by $\mathcal{T}_X \cap A \subset \mathcal{T}_A$. Thus $f|A: A \to Y$ is continuous.In (2), for (i), for each $V \in \mathcal{T}_{f(X)}$, let $V = f(X) \cap V'$ for some $V' \in \mathcal{T}_Y$. Since f is continuous, $(f^*)^{-1}(V) = (f^*)^{-1}(f(X) \cap V') = f^{-1}(V') \in \mathcal{T}_X$. Then f^* is continuous. For (ii), for each $W \in \mathcal{T}_Y$, $f^{-1}(W) = (f^*)^{-1}(f(X) \cap W) = (f^*)^{-1}(W') \in \mathcal{T}_X$ for some $W' \in \mathcal{T}_{f(X)}$. Then f is continuous.

For a set X, the map $1_x : X \to X$ denotes the *identity* map by $1_X(x) = x$. For sets X and Y with $X \subset Y$, the map $i_X : X \to Y$ denotes the *inclusion map* by $i_X(x) = x$. The following is obvious.

Remark 2.2. (1) (i) The map $1_X : (X, \mathcal{T}_X) \to (X, \mathcal{T}'_X)$ is continuous iff $\mathcal{T}'_X \subset \mathcal{T}_X$.

(ii) The map $i_X : (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ is continuous iff $\mathcal{T}_Y \cap X \subset \mathcal{T}_X$.

(2) (i) For a discrete space X, any $f: X \to Y$ and f^* are continuous.

(ii) For a non-discrete space X, make X to be a discrete space X^* . Then the map $1_{X^*} : X^* \to X$ is continuous, but the map $1_X : X \to X^*$ is not continuous.

For a space X, let \mathcal{P} be a cover of X consisting of subspaces of X. Then X is determined by $\mathcal{P}([4])$ (or X has the weak topology with respect to $\mathcal{P}([7])$) if $U \subset X$ is open in X iff $U \cap P$ is relatively open in P for each $P \in \mathcal{P}$, here we can replace "open" by "closed".

Let us recall the following which is routinely shown.

Lemma 2. 3. (1) Let X be a space determined by a cover \mathcal{P} . Then $f: X \to Y$ is continuous iff so is $f|P: P \to Y$ for each $P \in \mathcal{P}$. In particular, this remains true if \mathcal{P} is an open cover (or a locally finite closed cover) consisting of subspaces of X.

(2) (X, \leq) has a (disjoint) open cover consisting of convex components $C(a) = \bigcup \{C \mid C \text{ is convex in } X \text{ with } a \in C\}$ $(a \in X).$

The following holds by Lemmas 1.2, 2.1(1), and 2.3.

Proposition 2. 4. (1) For $A \subset (X, \leq)$, suppose that A is (*) connected; compact; convex; or dense-order in X. Then for a continuous map f from X into (a space) Y, f|A is continuous.

(2) Suppose that (X, \leq) is determined by a cover \mathcal{P} each of whose elements is (*) in (1). Then $f: X \to Y$ is continuous iff so is $f|P: P \to Y$ for each $P \in \mathcal{P}$. In particular, this remains true for an open cover \mathcal{P} of X consisting of convex

components in X.

- Theorem 2. 5. (1) (a) For $A \subset (X, \leq)$, A is a subspace of X iff the map $i_A : A \to X$ is continuous. (b) For $A \subset (X, \leq)$, the following are equivalent.
 - (i) A is a subspace of X.
 - (ii) For any continuous map f from X into any (Y, \leq) , $f|A : A \to (Y, \leq)$ is continuous.
 - (2) Let f be a continuous map from (a space) X into (Y, \leq) . Then f^* is continuous.

Proof. In (1), for (a), the only if part holds by Remark 2.2(1). For the if part, $\mathcal{T}_X \cap A \subset \mathcal{T}_A$, here $\mathcal{T}_A = \mathcal{T}(\leq_A)$. Since $\mathcal{T}_A \subset \mathcal{T}_X \cap A$, $\mathcal{T}_A = \mathcal{T}_X \cap A$. Thus *A* is a subspace of *X*. For (b), (i) implies (ii) by Lemma 2.1(1). To see (ii) \Rightarrow (i), for the continuous map $1_X : (X, \leq) \to (X, \leq)$, the map $i_A : A \to (X, \leq)$ is continuous by (ii). Then (i) holds by (a).

For (2), $\mathcal{T}_{f(X)} \subset f(X) \cap \mathcal{T}_Y$, here $\mathcal{T}_{f(X)} = \mathcal{T}(\leq_{f(X)})$. Then (2) holds by Lemma 2.1(2).

The following holds by Theorem 2.5(2) with Proposition 2.4(1).

Proposition 2. 6. Let f be a continuous map from (a space) X into (Y, \leq) . If A is a subspace of X, then $g = f|A : A \to Y$ is continuous, thus so is $g^* : A \to f(A) \subset Y$. When $A \subset X = (X, \leq)$ is connected; compact; convex; or dense-order in X, g and g^* are continuous.

A surjection $f: (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ is *quotient* if $\mathcal{T}_Y = \{V \subset Y | f^{-1}(V) \in \mathcal{T}_X\}$. Quotient maps are continuous. Every quotient injection is a homeomorphism.

Theorem 2. 7. For a map f from (a space) X into (Y, \leq) , let f^* be quotient. Then f is continuous iff f(X) is a subspace of Y.

Proof. The if part holds by Lemma 2.1(2), for f^* is continuous. For the only if part, we show $f(X) \cap \mathcal{T}_Y \subset \mathcal{T}_{f(X)}$, here $\mathcal{T}_{f(X)} = \mathcal{T}(\leq_{f(X)})$. Let $O' = f(X) \cap O \in f(X) \cap \mathcal{T}_Y$, $O \in \mathcal{T}_Y$. Then $(f^*)^{-1}(O') = (f^*)^{-1}(f(X) \cap O) = f^{-1}(O) \in \mathcal{T}_X$. Since f^* is quotient, $O' \in \mathcal{T}_{f(X)}$. Thus, $f(X) \cap \mathcal{T}_Y \subset \mathcal{T}_{f(X)}$. While, $\mathcal{T}_{f(X)} \subset f(X) \cap \mathcal{T}_Y$. Then $\mathcal{T}_{f(X)} = f(X) \cap \mathcal{T}_Y$, which shows f(X) is a subspace of Y.

A map f from a space X into a space Y is *open* (resp. *closed*) if for any open (resp. closed) set A in X, f(A) is open (resp. closed) in Y. Every open and closed map need not be continuous (by the map 1_X in Remark 2.2(2)).

Remark 2. 8. (1) Every projection p from the product space $X \times Y$ onto X by p(x, y) = y is a continuous, open map.

(2) Every continuous map f from a compact space X into a Hausdorff space Y is closed (indeed, each closed set F in X is compact in X, then f(F) is compact in Y, hence closed in Y).

Corollary 2. 9. For a map f from (a space) X into (Y, \leq) , let f^* be open or closed. Then f is continuous iff f^* is continuous, and f(X) is a subspace of Y. When X is connected or compact, this remains true.

Proof. The if part holds by Lemma 2.1(2). For the only if part, f^* is continuous (by Theorem 2.5(2)). But, since f^* is open or closed, f^* is quotient. Hence, f(X) is a subspace of Y by Theorem 2.7. For the only if part of the latter part, note f(X) is connected or compact in Y, thus f(X) is a subspace of Y by Lemma 1.2.

Let us say that a map $f: (X, \leq) \to (Y, \leq)$ is monotone if f is monotonically increasing (i.e., $x \leq y$ implies $f(x) \leq f(y)$), or monotonically decreasing (i.e., $x \leq y$ implies $f(y) \leq f(x)$). We call f order-preserving if it is monotonically increasing.

Lemma 2.10. Every monotone bijection $f : (X, \leq) \rightarrow (Y, \leq)$ is a homeomorphism.

Proof. Since f is a monotone bijection, for the subbases \mathcal{B} for (X, \leq) , and \mathcal{B}' for (Y, \leq) , routinely $f(\mathcal{B}) = \mathcal{B}'$, which implies f is a homeomorphism.

Lemma 2.11. Let $f: (X, \leq) \to (Y, \leq)$ be order-preserving (resp. monotone) on a dense subset D of X. If f^* is continuous, f is order-preserving (resp. monotone).

Proof. Suppose f is not order-preserving. Then there exist $a, b \in X$ with a < b, but f(b) < f(a). Since f^* is continuous, there exist nbds V(a), V(b) in X such that for $x \in V(a)$ and $y \in V(b)$, x < y, but f(y) < f(x). Since D is dense in X, there exist $x, y \in D$ with $x \in V(a)$, $y \in V(b)$, then x < y, so $f(x) \le f(y)$. But f(y) < f(x), a contradiction. The parenthetic part is similarly shown.

A map $f: X \to Y$ is a homeomorphic embedding if f^* is a homeomorphism and f(X) is a subspace of Y.

Corollary 2.12. Let $f: (X, \leq) \to (Y, \leq)$. If f^* is a homeomorphism, (i), (ii), and (iii) below are equivalent. If f^* is a bijection which is monotone on a dense subset D of X, (i), (ii) are equivalent (when X = D, (i), (ii), (iii) are equivalent).

- (i) f is continuous.
- (ii) f is a homeomorphic embedding.
- (iii) f(X) is a subspace of Y.

Proof. (i) \Rightarrow (iii) holds by Theorem 2.7. (iii) \Rightarrow (ii) is clear. (ii) \Rightarrow (i) holds by Lemma 2.1(2). For the latter part, note that (i) implies that f^* is monotone by Lemma 2.11, thus f^* is a homeomorphism by Lemma 2.10.

Proposition 2.13. Let $f: (X, \leq) \rightarrow (Y, \leq)$ be a continuous map, and X be connected. Then the following are equivalent.

- (i) f is monotone.
- (ii) Every $(f^*)^{-1}(y)$ is connected in X.
- (iii) Every $(f^*)^{-1}(y)$ is convex in X.

Proof. For (i) \Rightarrow (iii), suppose some $f^{-1}(y)$ is not convex in X. Then there exist $a, b, c \in X$ such that a < c < b with $a, b \in f^{-1}(y)$, but $c \notin f^{-1}(y)$. Thus f(a) = f(b) = y, but $f(c) \neq y$. This shows that f is not monotone.

(iii) \Rightarrow (ii) holds by Lemma 1.1(1).

For (ii) \Rightarrow (i), first the following holds by means of Lemma 1.1, noting X is connected.

(*) For any convex set [a,b] in X, (*) I = f([a,b]) is connected, compact in Y; hence, I is a convex set in Y having max I and min I (actually, [a,b] is connected, compact in X. Then I is connected, compact).

Now, suppose f is not monotone on some [a, b] in X. Thus, using (*), we can assume that (i) max f([a, b]) = p = f(c) with a < c < b, $f(a), f(b) \neq p$; or (ii) min f([a, b]) = p' = f(c') with a < c' < b, $f(a), f(b) \neq p'$ (if f is not monotone on some [a', b'] in X, but f([a', b']) has max f(a') and min f(b') for example. Then we can take $[a, b] \subset [a', b']$ satisfying (i) or (ii), for f is not monotone on [a', b']). We may assume (i). Let I = f([a, b]), and $C = I \setminus \{p\} \neq \emptyset$. Then C is connected in I, because C is convex in I, noting $p = \max I$. Let $g = f \mid [a, b] : [a, b] \rightarrow I$. Since f is continuous, g is continuous by Proposition 2.6. Since [a, b] is compact in X, g is a closed map (by Remark 2.8(2)). Hence g is a quotient map. Also, for any $y \in I$, $g^{-1}(y) (= f^{-1}(y) \cap [a, b])$ is convex in [a, b], hence connected in [a, b] (by Lemma 1. 1). Thus, $g^{-1}(C)$ is connected in [a, b] by [1, VI.3.4] (or [2, Theorem 6.1.29]). But, $g^{-1}(C) = [a, b] \setminus f^{-1}(p) (\ni a, b)$ is

not connected in [a, b]. This is a contradiction. Hence, f is monotone.

Remark 2.14. We have the following in view of [1.1, Proposition 2.3].

(1) Let $f: (X, \leq) \to Y$ be an open map. Suppose $A = f^{-1}(y)$ is connected in X with $|A| \geq 2$ (or A contains a connected set C in X with $|C| \geq 2$). Then y is isolated in Y. If f is continuous with $\{y\}$ closed in Y, $X \neq A$ is not connected. (Indeed, A contains a non-empty open set (a, b) in X by Lemma 1.1(1), then y = f((a, b)) is isolated in Y. If f is continuous, A is open and closed in X, thus X is not connected).

(2) (a) For $X = (X, \leq)$ and $Y = (Y, \leq')$, $X \times Y$ is a LOTS by the lexicographic order \leq defined by $(x_1, y_1) \leq (x_2, y_2)$ if $x_1 < x_2$, or $x_1 = x_2$ with $y_1 \leq' y_2$.

(b) If $X \times Y$ is the *product space*, then it is not a LOTS by any order if X contains a connected set C with $|C| \ge 2$, and Y is not discrete (by (1) with Remark 2.8(1)).

Corollary 2.15. A continuous map $f : \mathbb{R} \to \mathbb{R}$ is monotone iff every $(f^*)^{-1}(y)$ is connected in X ([2,6.1.H]).

Corollary 2.16. Every homeomorphism $f : (X, \leq) \rightarrow (Y, \leq)$ with X connected is monotone ([10]).

Theorem 2.17. Let $f : (X, \leq) \rightarrow (Y, \leq)$, and X be connected. Then (i), (ii) below are equivalent. When f is an injection, (i), (ii), and (iii) are equivalent.

- (i) f is continuous.
- (ii) f^* is continuous, and f(X) is a subspace of Y.
- *(iii) f is a homeomorphic embedding.*

Proof. The equivalence (i) between (ii) holds by Corollary 2.9. When f is an injection, for (ii) \Rightarrow (iii), f^* is a monotone bijection by Proposition 2.13. Thus, f^* is a homeomorphism by Lemma 2.10. Hence (ii), (iii) are equivalent.

Corollary 2.18. For $f : \mathbb{R} \to (Y, \leq)$, the result in Theorem 2.17 holds.

3. Examples

We give examples which are referred to in earlier parts of this paper.

Lemma 3.1. For any infinite LOTS $X = (X, \leq)$, we can make X to be a discrete LOTS X^* as follows: Let $Y = X \times \mathbb{Z}$ be a discrete LOTS by the lexicographic order \leq (in Remark 2.14(2)(a)). Then there exists a bijection $f : X \to Y$ since |X| = |Y|, thus we can define the order \leq_f on X by $x \leq_f y$ iff $f(x) \leq f(y)$ on Y. Hence $f : (X, \leq_f) \to (Y, \leq)$ is an orderpreserving homeomorphism by Lemma 2.10. Then $X^* = (X, \leq_f)$ is a discrete LOTS.

Related to Proposition 2.4, Theorem 2.5, and Corollary 2.12, etc., we have the following example. (In Lemma 1.2, note that every connected, compact LOTS need not be a subspace in \mathbb{R} in view of Example 3.2(1) below).

Example 3. 2. (1) A map $f = 1_X : (X, \le) \to (X, \le)$ is a homeomorphism, but f|A with $A \subset (X, \le)$ is not continuous, where (i) (X, \le) and A are connected, compact LOTS, or (ii) (X, \le) is a discrete LOTS, and A is a connected, compact LOTS.

(2) A map $f = i_X : X \to (Y, \leq)$ with $X \subset (Y, \leq)$ is continuous, but the map $f^* = 1_X : X \to (Z, \leq)$ is not continuous, where Z is a subset of Y, but \leq is not the restriction of \leq .

(3) A surjection (resp. bijection) $f: (X, \leq) \to (X, \leq)$ such that X is a connected, compact LOTS which is disjoint union of connected sets (resp. dense-ordered sets) A and B in X, and f|A, f|B are order-preserving continuous, but f is neither

monotone nor continuous.

Proof. In (1), for (i), let $(X, \leq) = [0, 3] \subset \mathbb{R}$, and $A = [0, 1) \cup [2, 3] \subset (X, \leq)$. Then X and A are connected, compact LOTS by Lemma 1.1. For (ii), let $(X, \leq) = Y = (\mathbb{R} \times \mathbb{Z}, \leq)$, and let $A = [0, 1] \times 0 \subset Y$ in Lemma 3.1. Since A is homeomorphic to $[0, 1] \subset \mathbb{R}$, A is a connected, compact LOTS. Thus, in (i) and (ii), $f = 1_X : (X, \leq) \to (X, \leq)$ is a homeomorphism, but $f|A = i_A : A \to (X, \leq)$ is not continuous.

For (2), let $X = \mathbb{Q}$ in $Y = \mathbb{R}$, and let $Z = \mathbb{Q}^*$ (in Lemma 3.1). Then $f = i_X : X \to Y$ is continuous, but $f^* = 1_X : X \to Z$ is not continuous.

For (3), let $X = [0,2] \subset \mathbb{R}$, and let A = [0,1), B = [1,2]. Let $f : (X, \le) \to (X, \le)$ by $f(x) = x (x \in A)$, $f(x) = 2x - 2 (x \in B)$. For the parenthetic part, let $X = [0,2] \subset \mathbb{R}$, and let $A = [0,2] \setminus \mathbb{Q}$, $B = [0,2] \cap \mathbb{Q}$. Let $f : (X, \le) \to (X, \le)$ by $f(x) = x (x \in A)$, and $f(x) = (1/2)x (0 \le x < 4/3, x \in B)$, $f(x) = 2x - 2 (4/3 \le x \le 2, x \in B)$.

Related to Theorem 2.5, Theorem 2.7, etc., we have the following example.

Example 3. 3. (1) An order-preserving map $f: (X, \leq) \to (Y, \leq)$ such that X and f(X) are connected, compact LOTS, and f^* is a homeomorphism, but f is not continuous, and f(X) is not a subspace of Y.

(2) An order-preserving map $f: (X, \leq) \to (Y, \leq)$ such that Y, f(X) are connected LOTS, and f, f^* are continuous, but f^* is not quotient, and f(X) is not a subspace of Y.

Proof. For (1), let $X = [0, 2], Y = [0, 3] \subset \mathbb{R}$, and $f : X \to Y$ by f(x) = x ($x \in [0, 1)$), f(x) = x + 1 ($x \in [1, 2]$). Then X, and $f(X) = [0, 1) \cup [2, 3] \subset Y$ are connected, compact LOTS, but f(X) is not a subspace of Y. f is an order-preserving injection, thus f^* is a homeomorphism (by Lemma 2.10), but f is not continuous.

For (2), let $X = [0, 1) \cup (1, \infty) \subset \mathbb{R}$ and $Y = \mathbb{R}$. Let f(x) = 0 ($0 \le x < 1$), f(x) = x (1 < x). Here, $f(X) = \{0\} \cup (1, \infty)$ is a connected LOTS which is not a subspace of Y, and f is continuous. Also, f^* is continuous, but it is not quotient (indeed, $(f^*)^{-1}(0) = [0, 1)$ is open in X, but $\{0\}$ is not open in f(X)).

Related to Proposition 2.13, Theorem 2.17, etc., we have the following example.

Example 3. 4. (1) (a) A homeomorphism $f: (X, \leq) \to (X, \leq)$ is not monotone.

(b) A bijection $f = 1_X : (X, \leq) \to (X, \leq)$ is continuous, but f is not a homeomorphism (not even quotient), and not monotone.

(2) An order-preserving continuous surjection $f: (X, \leq) \to (X, \leq)$, but some $f^{-1}(y)$ is not connected in X.

(3) A bijection $f: (X, \leq) \to (X, \leq)$ with X connected is not continuous.

(4) An order-preserving surjection $f: (X, \leq) \to (Y, \leq)$ such that X and every $f^{-1}(y)$ are connected, but f is not continuous.

Proof. In (1), for (a), let $X = \mathbb{R} \setminus \{0\}$, and let f(x) = x (x < 0), f(x) = 1/x (x > 0). For (b), let $(X, \le) = \mathbb{R}^*$ in Lemma 3.1, and let $(X, \le) = \mathbb{R}$.

For (2), let $f : \mathbb{Z} \to \mathbb{Z}$ by $f(x) = x (x \le 0), f(x) = x - 1 (x \ge 1).$

For (3), let $X = \mathbb{R}$, and let $f(x) = x (x \le 0), f(x) = 1/x (x > 0).$

For (4), let $X = \mathbb{R}$, and $Y = (-\infty, 0] \cup [1, \infty) \subset \mathbb{R}$. Let f(x) = x ($x \le 0$), f(x) = 1 ($0 < x \le 1$), and f(x) = x (1 < x).

We conclude this paper by recording some related matters around LOTS.

Note: As a case of LOTS, in [9] we consider algebraic order topologies on ordered groups or ordered rings, which are

compatible with their operations (cf.[8]). In a separated paper, we will consider continuity of homomorphisms between ordered fields or ordered rings, etc.

Note: As generalizations of LOTS, let us recall the following spaces.

A space (X, \mathcal{T}) is *orderable* ([11] (or [6])) if \mathcal{T} coincides with an order topology by some order on X. Every orderable space need not be a LOTS, and every subspace of a LOTS need not be orderable ([9, 11], etc.). A space X with an order is a *generalized ordered space* (abbreviated GO-space) if X is a subspace (or closed subspace) of a LOTS X', where the order of X is the restriction of the order of X'. Every GO-space is a LOTS if it is connected or compact. For GO-spaces, see [5, 6] etc. Every orderable space is a GO-space, but the converse need not hold. (We do not deal with these spaces in this paper, but we will leave it to the readers).

REFERENCES

- [1] J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1967.
- [2] R. Engelking, General Topology, Heldermann Verlag Berlin, 1989.
- [3] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand Reinhold company, 1960.
- [4] G. Gruenhage, E. Michael and Y. Tanaka, Spaces determined by point-countable covers, Pacific J. Math., 113(1984), 303-332.
- [5] D. J. Lutzer, On generalized ordered spaces, Dissertationes Math., 89(1971), 1-32.
- [6] J. Nagata, Modern General Topology, Elsevier Science Publishers B.V., North-Holland, 1985.
- [7] Y. Tanaka, Point-countable k-systems and product of k-spaces, Pacific J. Math., 113(1982), 199-208.
- [8] Y. Tanaka, Topology on ordered fields, Comment. Math. Univ. Carolinae, 53(2012), 139-147.
- [9] Y. Tanaka and Y. Kitamura, Algebraic order topologies, and related matters, to appear in Tsukuba J. Math.
- [10] Y. Tanaka and T. Shinoda, Orderability of compactifications, Questions and Answers in General Topology, 21(2003), 79-89.
- [11] M. Venkataraman, M. Rajagopalan and T. Soundararajan, Orderable topological spaces, General Topology and Appl., 2(1972), 1-10.

連続写像と線形順序空間

田中祥雄*

数学分野

要 旨

 $f を空間 X から空間 Y への写像とし, A ⊂ X とする。<math>f|A \ e A \ h o S Y \land o G G \otimes C(f|A)(x) = f(x), f^* e X \ h o S f(X) \land o G \otimes C(f^*(x)) = f(x) \ b c S \otimes C(f^*(x)) = f($

通常、A, f(X)をそれぞれ、X, Yの部分空間として考え、f が連続ならば、f|A, f^* は連続になる。一方、線 形順序空間 (Z, \leq)の部分集合A において、部分空間位相(相対位相)は、 \leq から誘導された順序位相と必ずしも 一致しない。線形順序空間X, Yに対し、A \subset X または $f(X) \subset Y$ における 2 つの位相の観点から、f, f|A, また は f^* の連続性を考察する。

キーワード:連続写像、線形順序空間、部分空間、単調写像、位相写像、連結集合

* 東京学芸大学 数学分野(184-8501 東京都小金井市貫井北町 4-1-1)