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Abstract

 For spaces X and Y , let f : X → Y be a map, and A ⊂ X . Define f |A : A→ Y by ( f |A)(x) = f (x) , and f ∗ : X → f (X)

by f ∗(x) = f (x) .

 Ordinarily, we assume that A is a subspace of X , and so is f (X) of Y . Thus, if f  is continuous, then so are f |A and f ∗

On the other hand, for a subset A of a linearly ordered space (abbreviated LOTS) (Z,≤) , the subspace topology (relative 

topology) on A need not coincide with the order topology induced by the restriction of ≤. For LOTS X and Y , we shall 

consider the continuity of f , f |A , or f ∗ in terms of the two topologies on A ⊂ X or f (x) .
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１．Preliminaries

 A couple (X,T ) (or (X,TX)) means a space with a topology T , but we use the symbol X as a space if we need not 

specify T  explicitly.

 For (X,T )  and A ⊂ X , A is open (resp. closed ) in X if A ∈ T (resp. X\A ∈ T ). An open set in X containing x ∈ X is 

denoted by a nbd V(x) .

 A subset A of (X,T )  is a subspace of X if it has the subspace topology (relative topology, or induced topology) 

A ∩ T (= {A ∩ U | U ∈ T }) .

 Let X = (X,≤) be a (linearly) ordered set (with at least two points). For a, b ∈ X with a < b, let (a, b) =

{x ∈ X | a < x < b} , [a, b] = {x ∈ X | a ≤ x ≤ b} , (a,+∞) = {x ∈ X | a < x} , and (−∞, a) = {x ∈ X | x < a} , etc.

 Let X = (X,≤)  be a space having the subbase {(a,+∞), (−∞, a) | a ∈ X} . Then X is called a linearly ordered 
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(topological) space, abbreviated LOTS, and the topology on X called the order topology (or interval topology) induced by 

≤ . For these, see [2, 6] (or [3], etc.).

 Every LOTS is a Hausdorff space; actually a (hereditarily) normal space (as is well-known).

 The symbol R (resp. Q ; Z ) is the space of real numbers (rationals; integers) with the usual (order) topology.

 Notation: A couple (X,≤) means a LOTS with the order topology induced by ≤ , and the topology is denoted by T (≤).

For a subset A of (X,≤), we assume that
 
A has the the order denoted by ≤A , which is the restriction of ≤  to A.

The symbol A ⊂ (X,≤)  means that A has the order topology T (≤A) , unless otherwise stated.

 Let A be a non-empty subset of (X,T ) . Then A is connected in X if it can not be represented as the union of two non-

empty disjoint sets in A ∩ T . A is compact in X if each cover of A by sets in A ∩ T  contains a finite subcover.

 A non-empty subset A of
 
(X,≤) is convex in X if for any a, b ∈ A with a ≤ b , [a, b] ⊂ A.

 The following basic lemma is well-known ([2, 3, 6, 11], etc.).

Lemma 1. 1.　For X = (X,≤)  and A ⊂ X , the following hold. 
 (1) X is connected iff X has no jumps and no gaps (in the sense of Dedekind cut). Thus, ( i ) if A is connected in X, then 

A is convex in X, and (ii) if X is connected, then any convex set in X is connected in X.

 (2) X is compact iff it has no gaps, and X has a minimal point and a maximal point.

 For a subset A of (X,T ) , A is dense in X if V ∩ A � ∅ for any non-empty set V ∈ T . For a subset A of (X,≤), let us 

call A dense-order in X (i.e., dense in X in the sense of order ([2])), if for each x < y  in X, there exists z ∈ A with 
x < z < y . Every dense-order set in (X,≤) is dense in X.

 For A ⊂ (X,≤) , obviously T (≤A) ⊂ A ∩ T (≤), but the two topologies on A need not be the same, even if A is closed 

and open in X; A is dense in X; or A is itself a connected, compact LOTS (cf. [9], or see Example 3.2(1) later).  But, we 

have the following, as is well-known ([2, 3, 6, 11], etc.).

Lemma 1. 2.　Suppose that A ⊂ (X,≤) is connected; compact; convex; or dense-order in X. Then A is a subspace of X  
(equivalently, A ∩ T (≤) ⊂ T (≤A) ).

 Notation: For sets X and Y, let f : X → Y be a map. For A ⊂ X, the symbol f |A means a map from A into Y by 

( f |A)(x) = f (x)  (restriction of domain).

 The symbol f ∗means a map from X onto f (X) by f ∗(x) = f (x)  (restriction of range).

 Let X = (X,TX)  and Y = (Y,TY ). Let f : X → Y be a map. Then f  is continuous if f −1(TY ) ⊂ TX , here f −1(TY ) =  
{ f −1(V) |V ∈ TY } ; equivalently, for each x ∈ X  and each nbd W( f (x))  in Y, there exists a nbd V(x)

 
in X with 

f (V(x)) ⊂ W( f (x)).

 For A ⊂ X , and f (X) ⊂ Y , ordinarily we assume that A is a subspace of X, and f (X) is a subspace of Y; see [1, 2], 

and other reference books. Then, for f  being continuous, f |A  and f ∗ are continuous. However, for X = (X,≤)  (resp. 

Y = (Y,
)) , the subspace topology on the subset A of X (resp. f (X) of Y ) need not coincide with the order topology 

T (≤A) (resp. T (
 f (X))).

 In this paper, for a map f : (X,≤)→ (Y,
)  with A ⊂ X , we assume that A ⊂ (X,≤)  with the topology T (≤A) , and 
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f (X) ⊂ (Y,
)  with the topology T (
 f (X)) , unless otherwise stated.

２．Results

 The following is elementary, but assume that the subset A of X (resp. f (X) of Y ) has the topology TA  (resp. T f (X) ), 

whch is not necessarily a subspace topology.

Lemma 2. 1.　For a map f : (X,TX)→ (Y,TY ) , the following hold. 
 (1)   For A ⊂ X, let TX ∩ A ⊂ TA . If f  is continuous, then so is f |A : A→ Y .

 In particular, for a subspace A of X , if f  is continuous, then so is f |A . 

 (2) ( i ) For T f (X) ⊂ f (X) ∩ TY , if f  is continuous, then so is f ∗ : X → f (X) .

 (ii) For f (X) ∩ TY ⊂ T f (X), if f ∗ is continuous, then so is f .

 In particular, for a subspace f (X) of Y, f is continuous iff so is f ∗.

 Proof. For (1), since f −1(TY ) ⊂ TX , f −1(TY ) ∩ A ⊂ TA by TX ∩ A ⊂ TA . Thus f |A : A→ Y is continuous.In (2), for (i), 

for each V ∈ T f (X) , let V = f (X) ∩ V ′  for some V ′ ∈ TY . Since f  is continuous, ( f ∗)−1(V) = ( f ∗)−1( f (X) ∩ V ′) =

f −1(V ′) ∈ TX . Then f ∗  is continuous. For (ii), for each W ∈ TY , f −1(W) = ( f ∗)−1( f (X) ∩W) = ( f ∗)−1(W′) ∈ TX  for 

some W′ ∈ T f (X) . Then f  is continuous. �

 For a set X, the map 1X : X → X denotes the identity map by 1X(x) = x . For sets X and Y with X ⊂ Y , the map 

iX : X → Y denotes the inclusion map by iX(x) = x . The following is obvious.

Remark 2. 2.　(1) ( i ) The map 1X : (X,TX)→ (X,T ′X)  is continuous iff T ′X ⊂ TX .

 (ii) The map iX : (X,TX)→ (Y,TY )  is continuous iff TY ∩ X ⊂ TX .

 (2) ( i ) For a discrete space X, any f : X → Y and f ∗ are continuous.

 (ii) For a non-discrete space X, make X to be a discrete space X∗ . Then the map 1X∗ : X∗ → X is continuous, but the 

map 1X : X → X∗  is not continuous.

 For a space X, let P be a cover of X consisting of subspaces of X. Then X is determined by P ([4]) (or X has the weak 

topology with respect to P ([7])) if U ⊂ X is open in X iff U ∩ P  is relatively open in P
 
for each P ∈ P , here we can 

replace ‘‘open’’ by ‘‘closed’’.

 Let us recall the following which is routinely shown.

Lemma 2. 3.　(1) Let X be a space determined by a cover P . Then f : X → Y  is continuous iff so is f |P : P→ Y  for 
each P ∈ P . In particular, this remains true if P is an open cover (or a locally finite closed cover) consisting of 

subspaces of X.

 (2) (X,≤)  has a (disjoint) open cover consisting of convex components C(a) =
⋃
{C | C  is convex in X with a ∈ C}  

( a ∈ X ).

 The following holds by Lemmas 1.2, 2.1(1), and 2.3.

Proposition 2. 4.　(1) For A ⊂ (X,≤) , suppose that A is (*) connected; compact; convex; or dense-order in X. Then for 
a continuous map f  from X into (a space) Y , f |A is continuous.

 (2) Suppose that (X,≤) is determined by a cover P each of whose elements is (*) in (1). Then f : X → Y is continuous 

iff so is f |P : P→ Y  for each P ∈ P . In particular, this remains true for an open cover P of X consisting of convex 
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components in X.

Theorem 2. 5.　(1) (a) For A ⊂ (X,≤) , A is a subspace of X iff the map iA : A→ X is continuous.
 (b) For A ⊂ (X,≤) , the following are equivalent.

 ( i ) A is a subspace of X .

 (ii) For any continuous map f  from X into any (Y,
) , f |A : A→ (Y,
)  is continuous.

 (2) Let f  be a continuous map from (a space) X into (Y,
) . Then f ∗ is continuous.

Proof. In (1), for (a), the only if part holds by Remark 2.2(1). For the if part, TX ∩ A ⊂ TA , here TA = T (≤A) . Since 

TA ⊂ TX ∩ A, TA = TX ∩ A . Thus A is a subspace of X. For (b), (i) implies (ii) by Lemma 2.1(1). To see (ii) ⇒  (i), for 

the continuous map 1X : (X,≤)→ (X,≤) , the map iA : A→ (X,≤)  is continuous by (ii). Then (i) holds by (a).

 For (2), T f (X) ⊂ f (X) ∩ TY , here T f (X) = T (
 f (X)) . Then (2) holds by Lemma 2.1(2). �

 The following holds by Theorem 2.5(2) with Proposition 2.4(1).

Proposition 2. 6.　Let f  be a continuous map from (a space) X into (Y,
) . If A is a subspace of X , then
g = f |A : A→ Y  is continuous, thus so is g∗ : A→ f (A) ⊂ Y . When A ⊂ X = (X,≤) is connected; compact; convex; or 

dense-order in X, g  and g∗  are continuous.

 A surjection f : (X,TX)→ (Y,TY )  is quotient if TY = {V ⊂ Y | f −1(V) ∈ TX} . Quotient maps are continuous. Every 

quotient injection is a homeomorphism.

Theorem 2. 7.　For a map f  from (a space) X into (Y,≤) , let
 

f ∗  be quotient.  Then f  is continuous iff f (X) is a 
subspace of Y .

Proof. The if part holds by Lemma 2.1(2), for f ∗  is continuous. For the only if part, we show f (X) ∩ TY ⊂ T f (X), here 

T f (X) = T (≤ f (X)) . Let O′ = f (X) ∩ O ∈ f (X) ∩ TY , O ∈ TY . Then ( f ∗)−1(O′) = ( f ∗)−1( f (X) ∩ O) = f −1(O) ∈ TX . Since 

f ∗ is quotient, O′ ∈ T f (X). Thus, f (X) ∩ TY ⊂ T f (X). While, T f (X) ⊂ f (X) ∩ TY . Then T f (X) = f (X) ∩ TY , which shows 

f (X) is a subspace of Y . �

 A map f  from a space X into a space Y
 
is open (resp. closed ) if for any open (resp. closed) set A in X, f (A)  is open 

(resp. closed) in Y .  Every open and closed map need not be continuous (by the map 1X
 
in Remark 2.2(2)).

Remark 2. 8.　(1) Every projection p  from the product space X × Y onto X by p(x, y) = y  is a continuous, open map.

 (2) Every continuous map f  from a compact space X into a Hausdorff space Y  is closed (indeed, each closed set F  in 

X is compact in X, then f (F) is compact in Y , hence closed in Y ).

Corollary 2. 9.　For a map f  from (a space) X into (Y,≤) , let f ∗  be open or closed. Then f  is continuous iff f ∗  is 
continuous, and f (X) is a subspace of Y . When X is connected or compact, this remains true.

Proof. The if part holds by Lemma 2.1(2). For the only if part, f ∗  is continuous (by Theorem 2.5(2)). But, since f ∗  is 

open or closed, f ∗  is quotient. Hence, f (X) is a subspace of Y  by Theorem 2.7. For the only if part of the latter part, note 

f (X) is connected or compact in Y , thus f (X) is a subspace of Y  by Lemma 1.2. �

 Let us say that a map f : (X,≤)→ (Y,
)  is monotone if f  is monotonically increasing (i.e., x ≤ y implies f (x) 
 f (y)), 

or monotonically decreasing (i.e, x ≤ y  implies f (y) 
 f (x) ). We call f  order-preserving if it is monotonically 
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increasing. 

Lemma 2.10.　Every monotone bijection f : (X,≤)→ (Y,
)  is a homeomorphism.

Proof. Since f  is a monotone bijection, for the subbases B for (X,≤), and B′  for (Y,
 ), routinely f (B) = B′ , which 

implies f is a homeomorphism. �

Lemma 2.11.　Let f : (X,≤)→ (Y,
)  be order-preserving (resp. monotone) on a dense subset D of X. If f ∗  is 
continuous, f  is order-preserving (resp. monotone).

Proof. Suppose f  is not order-preserving. Then there exist a, b ∈ X  with a < b , but f (b) ≺ f (a) . Since f ∗  is continuous, 

there exist nbds V(a) , V(b)  in X such that for x ∈ V(a) and y ∈ V(b) , x < y , but f (y) ≺ f (x) . Since D is dense in X, 

there exist x, y ∈ D with x ∈ V(a), y ∈ V(b) , then x < y , so f (x) 
 f (y) . But f (y) ≺ f (x) , a contradiction. The 

parenthetic part is similarly shown. �

 A map f : X → Y  is a homeomorphic embedding if f ∗  is a homeomorphism and f (X) is a subspace of Y .

Corollary 2.12.　Let f : (X,≤)→ (Y,
) . If f ∗  is a homeomorphism, (i), (ii), and (iii) below are equivalent. If f ∗  is a 
bijection which is monotone on a dense subset D of X, (i), (ii) are equivalent (when X = D , (i), (ii), (iii) are equivalent).

 (i) f  is continuous. 

 (ii) f  is a homeomorphic embedding. 

 (iii) f (X) is a subspace of Y .

Proof. (i) ⇒  (iii) holds by Theorem 2.7. (iii) ⇒  (ii) is clear. (ii) ⇒  (i) holds by Lemma 2.1(2). For the latter part, note 

that (i) implies that f ∗  is monotone by Lemma 2.11, thus f ∗  is a homeomorphism by Lemma 2.10. �

Proposition 2.13.　Let f : (X,≤)→ (Y,
)  be a continuous map, and X be connected.  Then the following are 
equivalent.

 (i) f  is monotone.

 (ii) Every ( f ∗)−1(y)  is connected in X.

 (iii) Every ( f ∗)−1(y)  is convex in X.

Proof. For (i) ⇒  (iii), suppose some f −1(y)  is not convex in X. Then there exist a, b, c ∈ X  such that a < c < b  with 

a, b ∈ f −1(y) , but c � f −1(y). Thus f (a) = f (b) = y , but f (c) � y . This shows that f  is not monotone.

 (iii) ⇒  (ii) holds by Lemma 1.1(1).

 For (ii) ⇒  (i), first the following holds by means of Lemma 1.1, noting X is connected.

 (*) For any convex set [a, b]  in X, (*) I = f ([a, b])  is connected, compact in Y ; hence, I is a convex set in Y  having 

max I and min I (actually, [a, b]  is connected, compact in X. Then I is connected, compact).

 Now, suppose f  is not monotone on some [a, b]  in X. Thus, using (*), we can assume that (i) max f ([a, b]) = p = f (c)  

with a < c < b , f (a), f (b) � p ; or (ii) min f ([a, b]) = p′ = f (c′)  with a < c′ < b , f (a), f (b) � p′  (if f  is not monotone 

on some [a′, b′]  in X, but f ([a′, b′])  has max f (a′)  and min f (b′)  for example. Then we can take [a, b] ⊂ [a′, b′] 

satisfying (i) or (ii), for f  is not monotone on
 
[a′, b′] ). We may assume (i). Let I = f ([a, b]) , and C = I\{p} � ∅ . Then 

C is connected in I , because C is convex in I , noting p =max I
 
. Let g = f |[a, b] : [a, b]→ I . Since f  is continuous, 

g is continuous by Proposition 2.6. Since [a, b]  is compact in X, g is a closed map (by Remark 2.8(2)).  Hence g is a 

quotient map. Also, for any y ∈ I , g−1 (y) (= f −1(y) ∩ [a, b] ) is convex in [a, b] , hence connected in [a, b]  (by Lemma

1. 1). Thus, g −1(C)  is connected in [a, b]  by [1, VI.3.4] (or [2, Theorem 6.1.29]). But, g−1(C) = [a, b]\ f −1(p) (� a, b)
 
is 
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not connected in [a, b] . This is a contradiction.  Hence, f  is monotone. �

Remark 2.14.　We have the following in view of [1.1, Proposition 2.3].

 (1)  Let f : (X,≤)→ Y  be an open map. Suppose A = f −1(y)  is connected in X with |A| ≥ 2(or A contains a connected 

set C  in X with |C| ≥ 2). Then y is isolated in Y . If f  is continuous with {y} closed in Y , X (� A)  is not connected. 

(Indeed, A contains a non-empty open set (a, b)  in X by Lemma 1.1(1), then y = f ((a, b))  is isolated in Y . If f  is 

continuous, A is open and closed in X, thus X is not connected).

 (2) (a) For X = (X,≤)  and Y = (Y,≤′), X × Y is a LOTS by the lexicographic order 
 defined by (x1, y1) 
 (x2, y2)  if 

x1 < x2 , or x1 = x2  with y1 ≤′ y2 .

 (b)  If X × Y is the product space, then it is not a LOTS by any order if X contains a connected set C  with |C| ≥ 2, and 

Y  is not discrete (by (1) with Remark 2.8(1)).

Corollary 2.15.　A continuous map f : R→ R  is monotone iff every ( f ∗)−1(y)  is connected in X ( [2,6.1.H] ).

Corollary 2.16.　Every homeomorphism f : (X,≤)→ (Y,
)  with X connected is monotone ( [10]).

Theorem 2.17.　Let f : (X,≤)→ (Y,
) , and X be connected. Then (i), (ii) below are equivalent. When f  is an injection, 
(i), (ii), and (iii) are equivalent.

 (i) f  is continuous.

 (ii) f ∗  is continuous, and f (X) is a subspace of Y .

 (iii) f  is a homeomorphic embedding.

Proof. The equivalence (i) between (ii) holds by Corollary 2.9. When f  is an injection, for (ii) ⇒  (iii), f ∗  is a monotone 

bijection by Proposition 2.13. Thus, f ∗  is a homeomorphism by Lemma 2.10. Hence (ii), (iii) are equivalent. �

Corollary 2.18.　For f : R→ (Y,
) , the result in Theorem 2.17 holds.

３．Examples

 We give examples which are referred to in earlier parts of this paper.

Lemma ３. 1.　For any infinite LOTS X = (X,≤) , we can make X to be a discrete LOTS X∗ as follows: Let Y = X × Z  
be a discrete LOTS by the lexicographic order 
  (in Remark 2.14(2)(a)). Then there exists a bijection f : X → Y since 

|X| = |Y | , thus we can define the order ≤ f  on X by x ≤ f y  iff f (x) 
 f (y)  on Y . Hence f : (X,≤ f )→ (Y,
)  is an order-

preserving homeomorphism by Lemma 2.10. Then X∗ = (X,≤ f )  is a discrete LOTS.

 Related to Proposition 2.4, Theorem 2.5, and Corollary 2.12, etc., we have the following example. (In Lemma 1.2, note 

that every connected, compact LOTS need not be a subspace in R in view of Example 3.2(1) below).

Example 3. 2.　(1) A map f = 1X : (X,≤)→ (X,≤)  is a homeomorphism, but f |A with A ⊂ (X,≤)  is not continuous, 

where (i) (X,≤) and A are connected, compact LOTS, or (ii) (X,≤) is a discrete LOTS, and A is a connected, compact 

LOTS.

 (2) A map f = iX : X → (Y,≤)  with X ⊂ (Y,≤)  is continuous, but the map f ∗ = 1X : X → (Z,
)  is not continuous, 

where Z is a subset of Y , but 
 is not the restriction of ≤ .

 (3) A surjection (resp. bijection) f : (X,≤)→ (X,≤)  such that X is a connected, compact LOTS which is disjoint union 

of connected sets (resp. dense-ordered sets) A and B in X, and f |A, f |B are order-preserving continuous, but f  is neither 
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monotone nor continuous.

Proof. In (1), for (i), let (X,≤) = [0, 3] ⊂ R , and A = [0, 1) ∪ [2, 3] ⊂ (X,≤) . Then X and A are connected, compact LOTS 

by Lemma 1.1. For (ii), let (X,≤) = Y = (R × Z,
) , and let A = [0, 1] × 0 ⊂ Y in Lemma 3.1. Since A is homeomorphic 

to [0, 1] ⊂ R , A is a connected, compact LOTS. Thus, in (i) and (ii), f = 1X : (X,≤)→ (X,≤)  is a homeomorphism, but 

f |A = iA : A→ (X,≤)  is not continuous.

 For (2), let X = Q in Y = R, and let Z = Q∗ (in Lemma 3.1). Then f = iX : X → Y is continuous, but f ∗ = 1X : X → Z

is not continuous.

 For (3), let X = [0, 2] ⊂ R , and let A = [0, 1) , B = [1, 2] . Let f : (X,≤)→ (X,≤)  by f (x) = x (x ∈ A) , f (x) =  

2x − 2 (x ∈ B). For the parenthetic part, let X = [0, 2] ⊂ R , and let A = [0, 2]\Q , B = [0, 2] ∩ Q . Let f : (X,≤)→ (X,≤)  

by f (x) = x (x ∈ A) , and f (x) = (1/2)x (0 ≤ x < 4/3, x ∈ B), f (x) = 2x − 2 (4/3 ≤ x ≤ 2, x ∈ B). �

 Related to Theorem 2.5, Theorem 2.7, etc., we have the following example.

Example 3. 3.　(1) An order-preserving map f : (X,≤)→ (Y,≤)  such that X and f (X) are connected, compact LOTS, 

and f ∗  is a homeomorphism, but f  is not continuous, and f (X) is not a subspace of Y .

 (2) An order-preserving map f : (X,≤)→ (Y,≤)  such that Y , f (X) are connected LOTS, and f , f ∗  are continuous, 

but f ∗  is not quotient, and f (X) is not a subspace of Y .

Proof. For (1), let X = [0, 2],Y = [0, 3] ⊂ R , and f : X → Y  by f (x) = x (x ∈ [0, 1)), f (x) = x + 1 (x ∈ [1, 2]). Then X, 

and f (X) = [0, 1) ∪ [2, 3] ⊂ Y  are connected, compact LOTS, but f (X) is not a subspace of Y . f  is an order-preserving 

injection, thus f ∗  is a homeomorphism (by Lemma 2.10), but f  is not continuous.

 For (2), let X = [0, 1) ∪ (1,∞) ⊂ R and Y = R . Let f (x) = 0 (0 ≤ x < 1), f (x) = x (1 < x) . Here, f (X) = {0} ∪ (1,∞) 

is a connected LOTS which is not a subspace of Y , and f  is continuous. Also, f ∗  is continuous, but it is not quotient 

(indeed, ( f ∗)−1(0) = [0, 1) is open in X , but {0} is not open in f (X)). �

 Related to Proposition 2.13, Theorem 2.17, etc., we have the following example.

Example 3. 4.　(1) (a) A homeomorphism f : (X,≤)→ (X,≤)  is not monotone.

 (b) A bijection f = 1X : (X,≤)→ (X,
)  is continuous, but f  is not a homeomorphism (not even quotient), and not 

monotone.

 (2) An order-preserving continuous surjection f : (X,≤)→ (X,≤) , but some f −1(y)  is not connected in X.

 (3) A bijection f : (X,≤)→ (X,≤)  with X connected is not continuous.

 (4) An order-preserving surjection f : (X,≤)→ (Y,≤)  such that X and every f −1(y)  are connected, but f  is not 

continuous.

Proof. In (1), for (a), let X = R\{0} , and let f (x) = x (x < 0) , f (x) = 1/x (x > 0) . For (b), let (X,≤) = R∗  in Lemma 3.1, 

and let (X,
) = R .

 For (2), let f : Z→ Z  by f (x) = x (x ≤ 0) , f (x) = x − 1 (x ≥ 1) .

 For (3), let X = R , and let f (x) = x (x ≤ 0) , f (x) = 1/x (x > 0) .

 For (4), let X = R , and Y = (−∞, 0] ∪ [1,∞) ⊂ R .  Let f (x) = x (x ≤ 0), f (x) = 1 (0 < x ≤ 1), and f (x) = x (1 < x) .

 �

 We conclude this paper by recording some related matters around LOTS.

 Note: As a case of LOTS, in [9] we consider algebraic order topologies on ordered groups or ordered rings, which are 
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compatible with their operations (cf.[8]). In a separated paper, we will consider continuity of homomorphisms between 

ordered fields or ordered rings, etc.

 Note: As generalizations of LOTS, let us recall the following spaces. 

 A space (X,T )  is orderable ([11] (or [6])) if T  coincides with an order topology by some order on X. Every orderable 

space need not be a LOTS, and every subspace of a LOTS need not be orderable ([9, 11], etc.). A space X with an order is 

a generalized ordered space (abbreviated GO-space) if X is a subspace (or closed subspace) of a LOTS X′ , where the 

order of X is the restriction of the order of X′. Every GO-space is a LOTS if it is connected or compact. For GO-spaces, 

see [5, 6] etc. Every orderable space is a GO-space, but the converse need not hold. (We do not deal with these spaces in 

this paper, but we will leave it to the readers).
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連続写像と線形順序空間

田　中　祥　雄＊

数学分野

要　旨

　 f を空間Xから空間Yへの写像とし，A ⊂ Xとする。 f |A をAからYへの写像で ( f |A)(x) = f (x) , f ∗をXから
f (X)への写像で f ∗(x) = f (x)とする。
　通常，A , f (X)をそれぞれ , X , Yの部分空間として考え , f が連続ならば , f |A , f ∗は連続になる。一方 , 線
形順序空間 (Z,≤)の部分集合Aにおいて，部分空間位相（相対位相）は，≤ から誘導された順序位相と必ずしも
一致しない。線形順序空間X , Yに対し，A ⊂ Xまたは f (X) ⊂ Y における 2つの位相の観点から , f , f |A , また
は f ∗の連続性を考察する。

キーワード：連続写像，線形順序空間，部分空間，単調写像，位相写像，連結集合
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