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Abstract

For spaces X and Y, let f: X — Y be amap, and A c X . Define f|A: A - Y by (flA)(x) = f(x), and f*: X — f(X)
by f7(x) = f(x).

Ordinarily, we assume that A is a subspace of X , and so is f(X) of Y. Thus, if f is continuous, then so are f|A and f*
On the other hand, for a subset A of a linearly ordered space (abbreviated LOTS) (Z, <), the subspace topology (relative
topology) on A need not coincide with the order topology induced by the restriction of <. For LOTS X and Y, we shall
consider the continuity of f, f|A, or f*in terms of the two topologieson A c X or f(x).
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1. Preliminaries

A couple (X,7) (or (X,Tx)) means a space with a topology 7, but we use the symbol X as a space if we need not
specify g~ explicitly.

For (X,7) and A c X, A is open (resp. closed ) in X if A € 7 (resp. X\A € 7). An open set in X containing x € X is

denoted by a nbd V(x).

A subset A of (X,77) is a subspace of X if it has the subspace topology (relative topology, or induced topology)
ANT (={ANU|UeT)-

Let X =(X,<) be a (linearly) ordered set (with at least two points). For a,b € X with g < b, let (a,b) =

(xeX|a<x<b},[a,bl={xeX|a<x<b}, (a,+x)={xeX|a<x},and (-o0,a) ={x € X | x < a}, etc.

Let X =(X,<) be a space having the subbase {(a,+),(—c0,a)|a € X}. Then X is called a linearly ordered
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(topological) space, abbreviated LOTS, and the topology on X called the order topology (or interval topology) induced by
<. For these, see [2, 6] (or [3], etc.).

Every LOTS is a Hausdorff space; actually a (hereditarily) normal space (as is well-known).

The symbol R (resp. Q; Z) is the space of real numbers (rationals; integers) with the usual (order) topology.

Notation: A couple (X, <) means a LOTS with the order topology induced by <, and the topology is denoted by 7 (<).
For a subset A of (X, <), we assume that A has the the order denoted by <4, which is the restriction of < to A.

The symbol A c (X, <) means that A has the order topology 77(<,), unless otherwise stated.

Let A be a non-empty subset of (X, 7). Then A is connected in X if it can not be represented as the union of two non-

empty disjoint sets in A N7". A is compact in X if each cover of A by sets in A N7~ contains a finite subcover.
A non-empty subset A of (X, <) is convex in X if for any a,b € Awitha < b, [a,b] C A.
The following basic lemma is well-known ([2, 3, 6, 11], etc.).

Lemma 1. 1. For X =(X,<) and A C X, the following hold.
(1) X is connected iff X has no jumps and no gaps (in the sense of Dedekind cut). Thus, (i) if A is connected in X, then
A is convex in X, and (ii) if X is connected, then any convex set in X is connected in X.

(2) X is compact iff it has no gaps, and X has a minimal point and a maximal point.

For a subset A of (X,7), A is dense in X if VN A # 0 for any non-empty set V € 7. For a subset A of (X, <), let us
call A dense-order in X (i.e., dense in X in the sense of order ([2])), if for each x <y in X, there exists z € A with

X <z <Yy.Every dense-order set in (X, <) is dense in X.

For A c (X, <), obviously 7(<,) c AN T (<), but the two topologies on A need not be the same, even if A is closed
and open in X; A is dense in X; or A is itself a connected, compact LOTS (cf. [9], or see Example 3.2(1) later). But, we

have the following, as is well-known ([2, 3, 6, 11], etc.).

Lemma 1. 2. Suppose that A C (X, <)is connected; compact; convex; or dense-order in X. Then A is a subspace of X
(equivalently, AN T (<) C T(<a)).

Notation: For sets X and Y, let f: X — Y be a map. For A C X, the symbol f|A means a map from A into Y by
(fIA)(x) = f(x) (restriction of domain).
The symbol f*means a map from X onto f(X) by f*(x) = f(x) (restriction of range).

Let X = (X,7x) and ¥ = (¥,7y). Let f: X — Ybe a map. Then f is continuous if f~'(7y) c Tx, here Ty =
{(f"/(V) |V € Ty} ; equivalently, for each x € X and each nbd W(f(x)) in Y, there exists a nbd V(x) in X with
FV(x) € W(f(x).

For A c X, and f(X) C Y, ordinarily we assume that A is a subspace of X, and f(X) is a subspace of Y; see [1, 2],
and other reference books. Then, for f being continuous, fIA and f*are continuous. However, for X = (X, <) (resp.

Y = (¥,x)), the subspace topology on the subset A of X (resp. f(X) of Y) need not coincide with the order topology
T (24) (resp. T(Z5x))-

In this paper, for a map f: (X, <) — (¥,<X) with A C X, we assume that A C (X, <) with the topology 77(<,), and
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S(X) c (¥, =) with the topology 7 (Zy(x)), unless otherwise stated.
2. Results

The following is elementary, but assume that the subset A of X (resp. f(X) of Y) has the topology 7, (resp. 7)),

whch is not necessarily a subspace topology.

Lemma 2. 1. Foramap f:(X,Tx) — (Y,Ty), the following hold.
(1) For Ac X, let TxNAcTu.1If f iscontinuous, thensois flJA:A—Y.
In particular, for a subspace A of X, if f is continuous, then so is f|A .
(2) (i) For Ty, C f(X) N Ty, if [ is continuous, then sois f*: X — f(X).
(ii) For f(X)NTy C T ), if f*is continuous, then so is f .
In particular, for a subspace f(X) of Y, fis continuous iff so is f.

Proof. For (1), since f{(Ty) c Tx, f{(Ty)NACTaby Tx NACT4.Thus f|A: A — Y is continuous.In (2), for (i),
for each Ve Ty, let V= f(X)NnV’ for some V' € Ty. Since f is continuous, UMV = (FY )N V) =
FY(V") e Tx. Then f* is continuous. For (ii), for each W € Ty, F~'(W) = (f)"'(fFX)nW) = (f)"' (W) € Ty for

some W’ € Ty, Then f is continuous. O

For a set X, the map 1y : X — X denotes the identity map by 1x(x) = x. For sets X and Y with X C Y, the map

ix 1 X — Y denotes the inclusion map by ix(x) = x . The following is obvious.

Remark 2. 2. (1) (i) The map 1y : (X,7x) — (X,T) is continuous iff 75 c Tx .
(i1) The map ix : (X,Tx) — (¥, Ty) is continuous iff Ty N X C Tx .
(2) (1) For a discrete space X, any f: X — Y and f*are continuous.
(i) For a non-discrete space X, make X to be a discrete space X*. Then the map 1x. : X* — X is continuous, but the

map ly : X — X" is not continuous.

For a space X, let $ be a cover of X consisting of subspaces of X. Then X is determined by P ([4]) (or X has the weak
topology with respect to P ([7])) if U C X is open in X iff U N P is relatively open in P for each P € #, here we can

replace “open” by “closed”.
Let us recall the following which is routinely shown.

Lemma 2. 3. (1) Let X be a space determined by a cover P. Then f: X — Y s continuous iff so is fI|P: P — Y for
each P € P. In particular, this remains true if P is an open cover (or a locally finite closed cover) consisting of
subspaces of X.

(2) (X, <) has a (disjoint) open cover consisting of convex components C(a) =\J{C | C is convex in X with a € C}

(aeX).

The following holds by Lemmas 1.2, 2.1(1), and 2.3.
Proposition 2. 4. (1) For A c (X, <), suppose that A is (*) connected, compact; convex; or dense-order in X. Then for
a continuous map f from X into (a space) Y, f|A is continuous.

(2) Suppose that (X, <) is determined by a cover P each of whose elements is (*) in (1). Then f : X — Y is continuous

iff sois fIP: P —Y foreach P e P. In particular, this remains true for an open cover P of X consisting of convex
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components in X.

Theorem 2. 5. (1) (a) For A c (X,<), A is a subspace of X iff the map is : A — X is continuous.
(b) For A C (X, <), the following are equivalent.
(i) Ais a subspace of X.
(ii) For any continuous map f from X into any (Y,<), flA: A — (Y, <) is continuous.

(2) Let f be a continuous map from (a space) X into (Y,<). Then f*is continuous.

Proof. In (1), for (a), the only if part holds by Remark 2.2(1). For the if part, Tx N A C T4, here T4 = 7(<4). Since
TaCTxNA, T4 =TxNA.Thus A is a subspace of X. For (b), (i) implies (ii) by Lemma 2.1(1). To see (ii) = (i), for
the continuous map 1y : (X, <) — (X, <), the map is : A — (X, <) is continuous by (ii). Then (i) holds by (a).

For (2), T¢x) € fX)N Ty, here T¢x) = T (Zyx)). Then (2) holds by Lemma 2.1(2). |

The following holds by Theorem 2.5(2) with Proposition 2.4(1).

Proposition 2. 6. Let f be a continuous map from (a space) X into (Y,2). If A is a subspace of X, then
g = flJA:A—Y is continuous, thus sois g* : A — f(A)C Y. When A c X = (X, <) is connected; compact; convex; or

dense-order in X, g and g* are continuous.

A surjection f: (X,Tx) — (Y, Ty) is quotient if Ty = {V c Y| f~(V) € Tx} . Quotient maps are continuous. Every

quotient injection is a homeomorphism.

Theorem 2. 7. For a map f from (a space) X into (Y,<), let f* be quotient. Then f is continuous iff f(X) is a
subspace of Y.

Proof. The if part holds by Lemma 2.1(2), for f* is continuous. For the only if part, we show f(X) N Ty C 7, here
Tix) =T (Spx0)- Let O = fX) N0 € f(X)NTy, O€Ty. Then (f)7'(0) = (f)'(f(X)n0) = £'(0) € Tx . Since
fris quotient, O’ € Tyx). Thus, f(X) N Ty C Tyxy. While, T¢x) € f(X)NTy. Then Tpx) = f(X) N Ty, which shows
f(X) is a subspace of Y. O

A map f from a space X into a space Y is open (resp. closed) if for any open (resp. closed) set A in X, f(A) is open

(resp. closed) in Y. Every open and closed map need not be continuous (by the map 1x in Remark 2.2(2)).

Remark 2. 8. (1) Every projection p from the product space X x ¥ onto X by p(x,y) = y is a continuous, open map.
(2) Every continuous map f from a compact space X into a Hausdorff space Y is closed (indeed, each closed set F in

X is compact in X, then f(F) is compact in Y, hence closed in Y').

Corollary 2. 9. For a map f from (a space) X into (Y,<), let f* be open or closed. Then f is continuous iff f* is

continuous, and f(X) is a subspace of Y. When X is connected or compact, this remains true.
Proof. The if part holds by Lemma 2.1(2). For the only if part, f* is continuous (by Theorem 2.5(2)). But, since f* is
open or closed, f* is quotient. Hence, f(X) is a subspace of ¥ by Theorem 2.7. For the only if part of the latter part, note

f(X) is connected or compact in Y, thus f(X) is a subspace of ¥ by Lemma 1.2. O

Let us say that amap f : (X, <) — (¥, <) is monotone if f is monotonically increasing (i.e., x < y implies f(x) < f(y)),

or monotonically decreasing (i.e, x <y implies f(y) < f(x)). We call f order-preserving if it is monotonically
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increasing.
Lemma 2.10. Every monotone bijection f : (X, <) — (Y, <) is a homeomorphism.

Proof. Since f is a monotone bijection, for the subbases B for (X, <), and B’ for (¥, <), routinely f(8) = 8’, which

implies fis a homeomorphism. d

Lemma 2.11. Let f:(X,<) — (Y,<) be order-preserving (resp. monotone) on a dense subset D of X. If f* is

continuous, [ is order-preserving (resp. monotone).

Proof. Suppose f is not order-preserving. Then there exist a,b € X with a < b, but f(b) < f(a). Since f* is continuous,
there exist nbds V(a), V(b) in X such that for x € V(a) and y € V(b), x <y, but f(y) < f(x). Since D is dense in X,
there exist x,y € D with x € V(a), y € V(b), then x <y, so f(x) < f(y). But f(y) < f(x), a contradiction. The

parenthetic part is similarly shown. O
Amap f:X — Y is a homeomorphic embedding if f* is a homeomorphism and f(X) is a subspace of Y.

Corollary 2.12. Let f:(X,2) = (Y,X). If f* is a homeomorphism, (i), (ii), and (iii) below are equivalent. If f* is a
bijection which is monotone on a dense subset D of X, (i), (ii) are equivalent (when X = D, (i), (ii), (iii) are equivalent).
(i) f is continuous.
(ii) f is a homeomorphic embedding.
(iii) f(X) is a subspace of Y.

Proof. (i) = (iii) holds by Theorem 2.7. (iii) = (ii) is clear. (ii) = (i) holds by Lemma 2.1(2). For the latter part, note
that (i) implies that f* is monotone by Lemma 2.11, thus f* is a homeomorphism by Lemma 2.10. O

Proposition 2.13. Let f:(X,<) = (Y,=) be a continuous map, and X be connected. Then the following are
equivalent.

(i) f is monotone.

(ii) Every (f*)"}(y) is connected in X.

(iii) Every (f*)"\(y) is convex in X.

Proof. For (i) = (iii), suppose some f~!(y) is not convex in X. Then there exist a,b,c € X such that a < ¢ < b with
a,b e f‘l(y), but c ¢ f‘l(y). Thus f(a) = f(b) =y ,but f(c) #y.This shows that f is not monotone.

(iii) = (ii) holds by Lemma 1.1(1).

For (ii) = (i), first the following holds by means of Lemma 1.1, noting X is connected.

(*) For any convex set [a,b] in X, (*) I = f([a,b]) is connected, compact in Y; hence, I is a convex set in Y having
max I and min [ (actually, [a, b] is connected, compact in X. Then [ is connected, compact).

Now, suppose f is not monotone on some [a, b] in X. Thus, using (*), we can assume that (i) max f([a,b]) = p = f(c)
with a <c <b, f(a), f(b) # p;or (ii)) min f([a,b]) = p’ = f(c') witha <’ <b, f(a), f(b) # p’ (if f is not monotone
on some [d’,b'] in X, but f([d’,b']) has max f(a’) and min f(b") for example. Then we can take [a,b] C [a, ']
satisfying (i) or (ii), for f is not monotone on [a’,b']). We may assume (i). Let I = f([a, b]), and C = I\{p} # 0 . Then
C is connected in I, because C is convex in I, noting p =max [ . Let g = fl|[a,b] : [a,b] — I. Since f is continuous,
g is continuous by Proposition 2.6. Since [a, b] is compact in X, g is a closed map (by Remark 2.8(2)). Hence gis a
quotient map. Also, for any y€ I, ¢! (y) (= f~'(y) N [a,b]) is convex in [a,b], hence connected in [a,b] (by Lemma
1. 1). Thus, g’l(C) is connected in [a, b] by [1, VI.3.4] (or [2, Theorem 6.1.29]). But, g’](C) =la, b]\f’l(p) (3 a,b) is
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not connected in [a, b]. This is a contradiction. Hence, f is monotone. O

Remark 2.14. We have the following in view of [1.1, Proposition 2.3].

(1) Let f:(X,<) > Y be an open map. Suppose A = f~!(y) is connected in X with |A| > 2(or A contains a connected
set C in X with |[C| > 2). Then yis isolated in Y. If f is continuous with {y} closed in Y, X (# A) is not connected.
(Indeed, A contains a non-empty open set (a,b) in X by Lemma 1.1(1), then y = f((a,b)) is isolated in Y. If f is
continuous, A is open and closed in X, thus X is not connected).

(2) (a) For X = (X,<) and Y = (¥,<), X x Y is a LOTS by the lexicographic order < defined by (x1,y1) < (x2,y2) if
X] < xp,0r xp = xp with y; <" y,.

(b) If X x Y is the product space, then it is not a LOTS by any order if X contains a connected set C with |C| > 2, and
Y is not discrete (by (1) with Remark 2.8(1)).

Corollary 2.15. A4 continuous map f: R — R is monotone iff every (f)"\(y) is connected in X ([2,6.1.H]).

Corollary 2.16.  Every homeomorphism f : (X, <) — (Y, <) with X connected is monotone ([10]).

Theorem 2.17. Let f: (X,<) — (Y,<), and X be connected. Then (i), (ii) below are equivalent. When f is an injection,
(i), (ii), and (iii) are equivalent.

(i) f is continuous.

(ii) f* is continuous, and f(X) is a subspace of Y.

(iii) f is a homeomorphic embedding.

Proof. The equivalence (i) between (ii) holds by Corollary 2.9. When f is an injection, for (ii) = (iii), f* is a monotone

bijection by Proposition 2.13. Thus, f* is a homeomorphism by Lemma 2.10. Hence (ii), (iii) are equivalent. O

Corollary 2.18. For f: R — (Y, <), the result in Theorem 2.17 holds.

3. Examples

We give examples which are referred to in earlier parts of this paper.

Lemma 3. 1. For any infinite LOTS X = (X, <), we can make X to be a discrete LOTS X* as follows: Let Y = X X Z
be a discrete LOTS by the lexicographic order < (in Remark 2.14(2)(a)). Then there exists a bijection f : X — Y since
IX| = Y|, thus we can define the order <y on X by x <py iff f(x) < f(y) on Y. Hence f:(X,<y) — (Y, <) is an order-
preserving homeomorphism by Lemma 2.10. Then X* = (X, <y) is a discrete LOTS.

Related to Proposition 2.4, Theorem 2.5, and Corollary 2.12, etc., we have the following example. (In Lemma 1.2, note

that every connected, compact LOTS need not be a subspace in R in view of Example 3.2(1) below).

Example 3. 2. (1) Amap f =1y :(X,<) — (X, <) is a homeomorphism, but f|A with A c (X, <) is not continuous,
where (i) (X, <) and A are connected, compact LOTS, or (ii) (X, <) is a discrete LOTS, and A is a connected, compact
LOTS.

(2) Amap f=ix:X— (¥,<) with X c (¥;<) is continuous, but the map f* = 1y : X = (Z, <) is not continuous,
where Z is a subset of Y, but < is not the restriction of <.

(3) A surjection (resp. bijection) f : (X, <) — (X, <) such that X is a connected, compact LOTS which is disjoint union

of connected sets (resp. dense-ordered sets) A and B in X, and f|A, f|B are order-preserving continuous, but f is neither
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monotone nor continuous.

Proof. In (1), for (i), let (X,<) =1[0,3]cR,and A =[0,1)U[2,3] c (X, <). Then X and A are connected, compact LOTS
by Lemma 1.1. For (ii), let (X,<)=Y =(RXZ,<), and let A =[0,1]x0 c Yin Lemma 3.1. Since A is homeomorphic
to [0,1] c R, A is a connected, compact LOTS. Thus, in (i) and (i), f = 1y : (X, <) — (X, <) is a homeomorphism, but
fIA=i4: A — (X, <) is not continuous.

For (2),let X =Q in Y =R, and let Z = Q" (in Lemma 3.1). Then f =iy : X — Y is continuous, but f* =1y : X - Z
is not continuous.

For (3), let X=[0,2]cR, and let A=[0,1), B=[1,2]. Let f:(X,<) = (X,<) by f(x)=x(x€A), f(x)=
2x — 2 (x € B). For the parenthetic part, let X = [0,2] c R, and let A = [0,2]\Q, B=1[0,2]NQ .Let f: (X,<) = (X, <)
by f(x) =x(x€A),and f(x) =(1/2)x(0<x<4/3,xeB), f(x) =2x-2(4/3<x<2,x€B). O

Related to Theorem 2.5, Theorem 2.7, etc., we have the following example.

Example 3. 3. (1) An order-preserving map f : (X, <) — (¥, <) such that X and f(X) are connected, compact LOTS,
and f* is a homeomorphism, but f is not continuous, and f(X) is not a subspace of Y.

(2) An order-preserving map f : (X, <) — (¥, <) such that ¥, f(X) are connected LOTS, and f, f* are continuous,
but f* is not quotient, and f(X) is not a subspace of Y.

Proof. For (1), let X =1[0,2],Y =[0,3]CcR,and f: X =Y by f(x) =x(x€[0,1)),f(x) =x+1(x€[l1,2]). Then X,
and f(X)=[0,1)U[2,3] C Y are connected, compact LOTS, but f(X) is not a subspace of Y. f is an order-preserving
injection, thus f* is a homeomorphism (by Lemma 2.10), but f is not continuous.

For (2), let X =[0,1)U(l,e0) cRand Y =R. Let f(x) =00 <x<1),f(x)=x(1 <x). Here, f(X)={0}U(1,o0)
is a connected LOTS which is not a subspace of ¥, and f is continuous. Also, f* is continuous, but it is not quotient

(indeed, (f*)_l(O) =[0,1) is open in X, but {0} is not open in f(X)). O

Related to Proposition 2.13, Theorem 2.17, etc., we have the following example.

Example 3. 4. (1) (a) A homeomorphism f : (X, <) — (X, <) is not monotone.

(b) A bijection f =1y :(X,<) — (X, <) is continuous, but f is not a homeomorphism (not even quotient), and not
monotone.

(2) An order-preserving continuous surjection f : (X, <) — (X, <), but some f‘l(y) is not connected in X.

(3) A bijection f: (X, <) — (X, <) with X connected is not continuous.

(4) An order-preserving surjection f : (X,<) — (¥, <) such that X and every f‘l(y) are connected, but f is not

continuous.

Proof. In (1), for (a), let X = R\{0}, and let f(x) = x (x <0), f(x) = 1/x (x > 0). For (b), let (X,<) =R"* in Lemma 3.1,
and let (X,<) =R.
For(2),let f:Z—>7Z by f(x) =x(x<0), f(x)=x—-1(x=1).
For (3),let X =R, andlet f(x) = x (x < 0), f(x) =1/x (x> 0).
For (4),let X =R,and Y = (—00,0] U [l,00) cR. Let f(x) =x(x<0), f(x) =1 (0<x<1),and f(x)=x(1<x).
O

We conclude this paper by recording some related matters around LOTS.

Note: As a case of LOTS, in [9] we consider algebraic order topologies on ordered groups or ordered rings, which are
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compatible with their operations (cf.[8]). In a separated paper, we will consider continuity of homomorphisms between

ordered fields or ordered rings, etc.

Note: As generalizations of LOTS, let us recall the following spaces.

A space (X, T) is orderable ([11] (or [6])) if 7 coincides with an order topology by some order on X. Every orderable
space need not be a LOTS, and every subspace of a LOTS need not be orderable ([9, 11], etc.). A space X with an order is
a generalized ordered space (abbreviated GO-space) if X is a subspace (or closed subspace) of a LOTS X', where the
order of X is the restriction of the order of X’. Every GO-space is a LOTS if it is connected or compact. For GO-spaces,
see [5, 6] etc. Every orderable space is a GO-space, but the converse need not hold. (We do not deal with these spaces in

this paper, but we will leave it to the readers).
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TANAKA: Continuous maps and linearly ordered spaces
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